Difference between revisions of "2021 Fall AMC 10A Problems/Problem 12"

(Created page with "==Problem== The base-nine representation of the number <math>N</math> is <math>27,006,000,052_{\text{nine}}</math>. What is the remainder when <math>N</math> is divided by <ma...")
 
m
Line 18: Line 18:
 
<math>-2\equiv 3(\text{mod }5)</math>
 
<math>-2\equiv 3(\text{mod }5)</math>
  
Thus, the answer is <math>3</math> or <math>\boxed{(D)}</math>.
+
Thus, the answer is <math>\boxed{\textbf{(D)}\ 3}</math>.
  
 
-Aidensharp
 
-Aidensharp

Revision as of 18:44, 22 November 2021

Problem

The base-nine representation of the number $N$ is $27,006,000,052_{\text{nine}}$. What is the remainder when $N$ is divided by $5$?

$\textbf{(A)}\ 0  \qquad\textbf{(B)}\  1 \qquad\textbf{(C)}\  2 \qquad\textbf{(D)}\  3 \qquad\textbf{(E)}\ 4$

Solution

Using module rules, we can find the remainder:

$27,006,000,052_9 = 2(9^{10})+7(9^9)+6(9^6)+5(9^1)+2$

$2(9^{10})+7(9^9)+6(9^6)+5(9^1)+2\equiv 2({-}1^{10})+7({-}1^9)+6({-}1^6)+5({-}1^1)+2 (\text{mod }5)$

$2({-}1^{10})+7({-}1^9)+6({-}1^6)+5({-}1^1)+2\equiv 2-7+6-5+2(\text{mod }5)$

$2-7+6-5+2\equiv -2(\text{mod }5)$

$-2\equiv 3(\text{mod }5)$

Thus, the answer is $\boxed{\textbf{(D)}\ 3}$.

-Aidensharp