Difference between revisions of "2017 AMC 12B Problems/Problem 24"
Line 35: | Line 35: | ||
\end{bmatrix}=17\cdot\frac{1}{2}\cdot 2 \cdot \frac{4a}{4a^2+1}</cmath>Factoring out denominators and expanding by minors, this is equivalent to | \end{bmatrix}=17\cdot\frac{1}{2}\cdot 2 \cdot \frac{4a}{4a^2+1}</cmath>Factoring out denominators and expanding by minors, this is equivalent to | ||
<cmath>\frac{32a^4-8a^2+2}{2a(4a^2+1)}=\frac{68a}{4a^2+1} \Longrightarrow 16a^4-72a^2+1=0</cmath>This factors as <math>(4a^2-8a-1)(4a^2+8a-1)=0</math>, so <math>a=1+\frac{\sqrt{5}}{2}</math> and so the answer is <math> \textbf{(D) \ }</math>. | <cmath>\frac{32a^4-8a^2+2}{2a(4a^2+1)}=\frac{68a}{4a^2+1} \Longrightarrow 16a^4-72a^2+1=0</cmath>This factors as <math>(4a^2-8a-1)(4a^2+8a-1)=0</math>, so <math>a=1+\frac{\sqrt{5}}{2}</math> and so the answer is <math> \textbf{(D) \ }</math>. | ||
+ | |||
+ | ==Solution 4== | ||
+ | |||
+ | Let <math>C = (0,0), D=(\frac1a, 0), B = (0,1), A = (a,1)</math> where <math>a>1</math>. Because <math>BC = 1, a = \frac{AB}{BC}</math>. Notice that the diagonals are perpendicular with slopes of <math>\frac1a</math> and <math>-a</math>. Let the intersection of <math>AC</math> and <math>BD</math> be <math>F</math>, then <math>\triangle BFC \sim \triangle ABC</math>. However, because <math>ABCD</math> is a trapezoid, <math>\triangle</math><math>BCF</math> and <math>\triangle ADF</math> share the same area, therefore <math>\triangle</math><math>BCE</math> is the reflection of <math>\triangle</math><math>BCF</math> over the perpendicular bisector of <math>BC</math>, which is <math>y=\frac12</math>. We use the linear equations of the diagonals, <math>y = -ax + 1, y = \frac1a x</math>, to find the coordinates of <math>F</math>. <cmath>-ax+1 = \frac1ax \Longrightarrow x = \frac{1}{a+\frac1a} = \frac{a}{a^2+1}</cmath> <cmath>y = \frac1ax = \frac{1}{a^2+1}</cmath> | ||
+ | The y-coordinate of <math>E</math> is simply <math>1-\frac{1}{a^2+1} = \frac{a^2}{a^2+1}</math> | ||
+ | The area of <math>\triangle BCE</math> is <math>\frac12 \frac{a}{a^2+1}</math>. We apply shoelace theorem to solve for the area of <math>\triangle ADE</math>. The coordinates of the triangle are <math>(\frac{a}{a^2+1}, \frac{a^2}{a^2+1}), (a,1), (\frac1a, 0)</math>, so the area is | ||
+ | |||
+ | <cmath>\frac12 |\frac{a^3}{a^2+1} + \frac1a - \frac{a}{a^2+1} - \frac{a}{a^2+1}| = \frac12 |\frac{a^3-2a}{a^2+1} + \frac1a|</cmath> | ||
+ | <cmath>= \frac12 |\frac{a^4-2a^2}{a(a^2+1)} + \frac{a^2+1}{a(a^2+1)}| = \frac12 \frac{a^4-a^2+1}{a(a^2+1)}</cmath> | ||
+ | Finally, we use the property that the ratio of areas equals <math>17</math> <cmath>\frac{\frac12}{\frac12} \frac{\frac{a^4-a^2+1}{a(a^2+1)}}{\frac{a}{a^2+1}} = 17 \Rightarrow \frac{a^4-a^2+1}{a^2} = 17 \Rightarrow a^4-18a^2+1 = 0</cmath> | ||
+ | <cmath>a^2 = 9+4\sqrt{5} = (2+\sqrt{5})^2 \Longrightarrow a = \boxed{\textbf{(D) } 2+\sqrt{5}}</cmath> | ||
+ | |||
+ | ~Zeric | ||
== Notes== | == Notes== |
Revision as of 01:14, 7 November 2021
Problem
Quadrilateral has right angles at and , , and . There is a point in the interior of such that and the area of is times the area of . What is ?
Solution 1
Let , , and . Note that . By the Pythagorean Theorem, . Since , the ratios of side lengths must be equal. Since , and . Let F be a point on such that is an altitude of triangle . Note that . Therefore, and . Since and form altitudes of triangles and , respectively, the areas of these triangles can be calculated. Additionally, the area of triangle can be calculated, as it is a right triangle. Solving for each of these yields: Therefore, the answer is
Solution 2
Draw line through , with on and on , . WLOG let , , . By weighted average .
Meanwhile, . This follows from comparing the ratios of triangle DEG to CFE and triangle AEG to FEB, both pairs in which the two triangles share a height perpendicular to FG, and have base ratio .
. We obtain , namely .
The rest is the same as Solution 1.
Solution 3
Let . Then from the similar triangles condition, we compute and . Hence, the -coordinate of is just . Since lies on the unit circle, we can compute the coordinate as . By Shoelace, we want Factoring out denominators and expanding by minors, this is equivalent to This factors as , so and so the answer is .
Solution 4
Let where . Because . Notice that the diagonals are perpendicular with slopes of and . Let the intersection of and be , then . However, because is a trapezoid, and share the same area, therefore is the reflection of over the perpendicular bisector of , which is . We use the linear equations of the diagonals, , to find the coordinates of . The y-coordinate of is simply The area of is . We apply shoelace theorem to solve for the area of . The coordinates of the triangle are , so the area is
Finally, we use the property that the ratio of areas equals
~Zeric
Notes
1) is the most relevant answer choice because it shares numbers with the givens of the problem.
2) It's a very good guess to replace finding the area of triangle AED with the area of the triangle DAF, where F is the projection of D onto AB(then find the closest answer choice).
See Also
2017 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.