Difference between revisions of "2017 AMC 10B Problems/Problem 25"
Isabelchen (talk | contribs) |
|||
Line 13: | Line 13: | ||
Since all of the scores are from <math>91 - 100</math>, we can subtract 90 from all of the scores. Basically, we're looking at their units digits (except for 100 - we're looking at 10 in this case). Since the last score was a 95, the sum of the scores from the first six tests must be <math>3 \pmod 7</math> and <math>0 \pmod 6</math>. Trying out a few cases, the only solution possible is 30 (this is from adding numbers 1-10). The sixth test score must be <math>0 \pmod 5</math> because <math>30\equiv 0\pmod5</math>. The only possible test scores are <math>95</math> and <math>100</math>, and <math>95</math> is already used, so the answer is <math>\boxed{\textbf{(E)}100}</math>. | Since all of the scores are from <math>91 - 100</math>, we can subtract 90 from all of the scores. Basically, we're looking at their units digits (except for 100 - we're looking at 10 in this case). Since the last score was a 95, the sum of the scores from the first six tests must be <math>3 \pmod 7</math> and <math>0 \pmod 6</math>. Trying out a few cases, the only solution possible is 30 (this is from adding numbers 1-10). The sixth test score must be <math>0 \pmod 5</math> because <math>30\equiv 0\pmod5</math>. The only possible test scores are <math>95</math> and <math>100</math>, and <math>95</math> is already used, so the answer is <math>\boxed{\textbf{(E)}100}</math>. | ||
+ | |||
+ | ==Solution 4 (Working Backwards)== | ||
+ | |||
+ | <cmath> \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|} | ||
+ | \hline | ||
+ | & 91 & 92 & 93 & 94 & 95 & 96 & 97 & 98 & 99 & 100 \\ | ||
+ | \hline | ||
+ | mod 7 & \textbf{0} & \textbf{1} & 2 & \textbf{3} & \underline{\textbf{4}} & \textbf{5} & \textbf{6} & 0 & 1 & \textbf{2} \\ | ||
+ | \hline | ||
+ | mod 6 & \textbf{1} & \textbf{2} & 3 & \textbf{4} & 5 & \textbf{0} & \textbf{1} & 2 & 3 & \underline{\textbf{4}} \\ | ||
+ | \hline | ||
+ | mod 5 & \textbf{1} & \textbf{2} & 3 & \underline{\textbf{4}} & 0 & \textbf{1} & \textbf{2} & 3 & 4 & 0 \\ | ||
+ | \hline | ||
+ | mod 4 & \underline{\textbf{3}} & \textbf{0} & 1 & 2 & 3 & \textbf{0} & \textbf{1} & 2 & 3 & 0 \\ | ||
+ | \hline | ||
+ | mod 3 & 1 & \textbf{2} & 0 & 1 & 2 & \textbf{0} & \underline{\textbf{1}} & 2 & 0 & 1 \\ | ||
+ | \hline | ||
+ | mod 2 & 1 & \underline{\textbf{0}} & 1 & 0 & 1 & \textbf{0} & 1 & 0 & 1 & 0 \\ | ||
+ | \hline | ||
+ | \end{tabular} </cmath> | ||
+ | |||
+ | ~isabelchen | ||
==Video Solution== | ==Video Solution== |
Revision as of 10:08, 21 October 2021
Contents
Problem
Last year Isabella took math tests and received
different scores, each an integer between
and
, inclusive. After each test she noticed that the average of her test scores was an integer. Her score on the seventh test was
. What was her score on the sixth test?
Solution 1
Let the sum of the scores of Isabella's first tests be
. Since the mean of her first
scores is an integer, then
, or
. Also,
, so by CRT,
. We also know that
, so by inspection,
. However, we also have that the mean of the first
test scores must be an integer, so the sum of the first
test scores must be an multiple of
, which implies that the
th test score is
.
Solution 2
First, we find the largest sum of scores which is which equals
. Then we find the smallest sum of scores which is
which is
. So the possible sums for the 7 test scores so that they provide an integer average are
and
which are
and
respectively. Now in order to get the sum of the first 6 tests, we subtract
from each sum producing
and
. Notice only
is divisible by
so, therefore, the sum of the first
tests is
. We need to find her score on the
test so we have to find which number will give us a number divisible by
when subtracted from
Since
is the
test score and all test scores are distinct that only leaves
.
Solution 3
Since all of the scores are from , we can subtract 90 from all of the scores. Basically, we're looking at their units digits (except for 100 - we're looking at 10 in this case). Since the last score was a 95, the sum of the scores from the first six tests must be
and
. Trying out a few cases, the only solution possible is 30 (this is from adding numbers 1-10). The sixth test score must be
because
. The only possible test scores are
and
, and
is already used, so the answer is
.
Solution 4 (Working Backwards)
~isabelchen
Video Solution
https://youtu.be/YFz4bctJYVE - Happytwin
See Also
2017 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.