Difference between revisions of "2021 AMC 10B Problems/Problem 21"
Cellsecret (talk | contribs) (→Video Solution by Interstigation) |
m (→Solution 1) |
||
Line 33: | Line 33: | ||
<cmath>x^2 + \left(\frac{1}{3}\right)^2 = (1-x)^2 \rightarrow x^2 + \frac{1}{9} = x^2 - 2x + 1 \rightarrow x=\frac{4}{9}</cmath> | <cmath>x^2 + \left(\frac{1}{3}\right)^2 = (1-x)^2 \rightarrow x^2 + \frac{1}{9} = x^2 - 2x + 1 \rightarrow x=\frac{4}{9}</cmath> | ||
− | We know this is a 3-4-5 triangle because the side lengths are <math>\frac{3}{9}, \frac{4}{9}, \frac{5}{9}</math>. We also know that <math>EAC'</math> is similar to <math>C'DF</math> because angle <math> | + | We know this is a 3-4-5 triangle because the side lengths are <math>\frac{3}{9}, \frac{4}{9}, \frac{5}{9}</math>. We also know that <math>EAC'</math> is similar to <math>C'DF</math> because angle <math>EC'F</math> is a right angle. Now, we can use similarity to find out that the perimeter is just the perimeter of <math>C'DF * \frac{AC'}{DF}</math>. Thats just <math>\frac{4}{3} * \frac{\frac{2}{3}}{\frac{4}{9}} = \frac{4}{3} * \frac{3}{2} = 2</math>. Therefore, the final answer is <math>\boxed{A}</math> |
~Tony_Li2007 | ~Tony_Li2007 |
Revision as of 09:55, 11 October 2021
Contents
Problem
A square piece of paper has side length and vertices and in that order. As shown in the figure, the paper is folded so that vertex meets edge at point , and edge intersects edge at point . Suppose that . What is the perimeter of triangle
Solution 1
We can set the point on where the fold occurs as point . Then, we can set as , and as because of symmetry due to the fold. It can be recognized that this is a right triangle, and solving for , we get,
We know this is a 3-4-5 triangle because the side lengths are . We also know that is similar to because angle is a right angle. Now, we can use similarity to find out that the perimeter is just the perimeter of . Thats just . Therefore, the final answer is
~Tony_Li2007
Solution 2
Let line we're reflecting over be , and let the points where it hits and , be and , respectively. Notice, to reflect over a line we find the perpendicular passing through the midpoint of the two points (which are the reflected and the original). So, we first find the equation of the line . The segment has slope , implying line has a slope of . Also, the midpoint of segment is , so line passes through this point. Then, we get the equation of line is simply . Then, if the point where is reflected over line is , then we get is the line . The intersection of and segment is . So, we get . Then, line segment has equation , so the point is the -intercept, or . This implies that , and by the Pythagorean Theorem, (or you could notice is a right triangle). Then, the perimeter is , so our answer is . ~rocketsri
Solution 3 (Fakesolve):
Assume that E is the midpoint of . Then, and since , . By the Pythagorean Theorem, . It easily follows that our desired perimeter is ~samrocksnature
Solution 4
As described in Solution 1, we can find that , and
Then, we can find we can find the length of by expressing the length of in two different ways, in terms of . If let , by the Pythagorean Theorem we have that Therefore, since we know that is right, by Pythagoras again we have that
Another way we can express is by using Pythagoras on , where is the foot of the perpendicular from to We see that is a rectangle, so we know that . Secondly, since . Therefore, through the Pythagorean Theorem, we find that
Since we have found two expressions for the same length, we have the equation Solving this, we find that .
Finally, we see that the perimeter of is which we can simplify to be . Thus, the answer is ~laffytaffy
Video Solution by OmegaLearn (Using Pythagoras Theorem and Similar Triangles)
~ pi_is_3.14
Video Solution by Interstigation
~Interstigation
Video Solution by The Power of Logic
https://www.youtube.com/watch?v=5kbQHcx1FfE
~The Power of Logic
See Also
2021 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 20 |
Followed by Problem 22 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.