Difference between revisions of "2018 AMC 12B Problems/Problem 5"
Pi is 3.14 (talk | contribs) (→Solution 2) |
MRENTHUSIASM (talk | contribs) m (Reformatted answer choice textbf, and shortened the conclusion.) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | How many subsets of | + | How many subsets of <math>\{2,3,4,5,6,7,8,9\}</math> contain at least one prime number? |
− | <math> | + | <math> |
+ | \textbf{(A) } 128 \qquad | ||
+ | \textbf{(B) } 192 \qquad | ||
+ | \textbf{(C) } 224 \qquad | ||
+ | \textbf{(D) } 240 \qquad | ||
+ | \textbf{(E) } 256 | ||
+ | </math> | ||
==Solution 1 == | ==Solution 1 == | ||
− | Since an element of a subset is either in or out, the total number of subsets of the 8 element set is <math>2^8 = 256</math>. However, since we are only concerned about the subsets with at least 1 prime in it, we can use complementary counting to count the subsets without a prime and subtract that from the total. Because there are 4 non-primes, there are <math>2^8 -2^4 = 240</math> subsets with at least | + | Since an element of a subset is either in or out, the total number of subsets of the <math>8</math>-element set is <math>2^8 = 256</math>. However, since we are only concerned about the subsets with at least <math>1</math> prime in it, we can use complementary counting to count the subsets without a prime and subtract that from the total. Because there are <math>4</math> non-primes, there are <math>2^8 -2^4 = \boxed{\textbf{(D) } 240}</math> subsets with at least <math>1</math> prime. |
==Solution 2== | ==Solution 2== | ||
− | We can construct our subset by choosing which primes are included and which composites are included. There are <math>2^4-1</math> ways to select the primes (total subsets minus the empty set) and <math>2^4</math> ways to select the composites. Thus, there are <math>15 | + | We can construct our subset by choosing which primes are included and which composites are included. There are <math>2^4-1</math> ways to select the primes (total subsets minus the empty set) and <math>2^4</math> ways to select the composites. Thus, there are <math>15\cdot16=\boxed{\textbf{(D) } 240}</math> ways to choose a subset of the eight numbers. |
== Video Solution == | == Video Solution == |
Revision as of 17:54, 18 September 2021
Problem
How many subsets of contain at least one prime number?
Solution 1
Since an element of a subset is either in or out, the total number of subsets of the -element set is . However, since we are only concerned about the subsets with at least prime in it, we can use complementary counting to count the subsets without a prime and subtract that from the total. Because there are non-primes, there are subsets with at least prime.
Solution 2
We can construct our subset by choosing which primes are included and which composites are included. There are ways to select the primes (total subsets minus the empty set) and ways to select the composites. Thus, there are ways to choose a subset of the eight numbers.
Video Solution
https://youtu.be/8WrdYLw9_ns?t=253
~ pi_is_3.14
See Also
2018 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 4 |
Followed by Problem 6 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.