Difference between revisions of "2018 AIME II Problems/Problem 12"
Coltsfan10 (talk | contribs) m (→Solution 3 (With yet another way to get the middle point)) |
(→Solution 1: Beautify the 1st solution) |
||
Line 7: | Line 7: | ||
For reference, <math>2\sqrt{65} \approx 16</math>, so <math>\overline{AD}</math> is the longest of the four sides of <math>ABCD</math>. Let <math>h_1</math> be the length of the altitude from <math>B</math> to <math>\overline{AC}</math>, and let <math>h_2</math> be the length of the altitude from <math>D</math> to <math>\overline{AC}</math>. Then, the triangle area equation becomes | For reference, <math>2\sqrt{65} \approx 16</math>, so <math>\overline{AD}</math> is the longest of the four sides of <math>ABCD</math>. Let <math>h_1</math> be the length of the altitude from <math>B</math> to <math>\overline{AC}</math>, and let <math>h_2</math> be the length of the altitude from <math>D</math> to <math>\overline{AC}</math>. Then, the triangle area equation becomes | ||
− | < | + | <cmath>\frac{h_1}{2}AP + \frac{h_2}{2}CP = \frac{h_1}{2}CP + \frac{h_2}{2}AP \rightarrow \left(h_1 - h_2\right)AP = \left(h_1 - h_2\right)CP \rightarrow AP = CP</cmath> |
− | What an important finding! Note that the opposite sides <math>\overline{AB}</math> and <math>\overline{CD}</math> have equal length, and note that diagonal <math>\overline{DB}</math> bisects diagonal <math>\overline{AC}</math>. This is very similar to what happens if <math>ABCD</math> were a parallelogram with <math>AB = CD = 10</math>, so let's extend <math>\overline{DB}</math> to point <math>E</math>, such that <math>AECD</math> is a parallelogram. In other words, < | + | What an important finding! Note that the opposite sides <math>\overline{AB}</math> and <math>\overline{CD}</math> have equal length, and note that diagonal <math>\overline{DB}</math> bisects diagonal <math>\overline{AC}</math>. This is very similar to what happens if <math>ABCD</math> were a parallelogram with <math>AB = CD = 10</math>, so let's extend <math>\overline{DB}</math> to point <math>E</math>, such that <math>AECD</math> is a parallelogram. In other words, <cmath>AE = CD = 10</cmath> and <cmath>EC = DA = 2\sqrt{65}</cmath> Now, let's examine <math>\triangle ABE</math>. Since <math>AB = AE = 10</math>, the triangle is isosceles, and <math>\angle ABE \cong \angle AEB</math>. Note that in parallelogram <math>AECD</math>, <math>\angle AED</math> and <math>\angle CDE</math> are congruent, so <math>\angle ABE \cong \angle CDE</math> and thus <cmath>\text{m}\angle ABD = 180^\circ - \text{m}\angle CDB</cmath> Define <math>\alpha := \text{m}\angle CDB</math>, so <math>180^\circ - \alpha = \text{m}\angle ABD</math>. |
− | <math>\ | + | We use the Law of Cosines on <math>\triangle DAB</math> and <math>\triangle CDB</math>: |
− | < | + | <cmath>\left(2\sqrt{65}\right)^2 = 10^2 + BD^2 - 20BD\cos\left(180^\circ - \alpha\right) = 100 + BD^2 + 20BD\cos\alpha</cmath> |
+ | |||
+ | <cmath>14^2 = 10^2 + BD^2 - 20BD\cos\alpha</cmath> | ||
Subtracting the second equation from the first yields | Subtracting the second equation from the first yields | ||
− | < | + | <cmath>260 - 196 = 40BD\cos\alpha \rightarrow BD\cos\alpha = \frac{8}{5}</cmath> |
− | This means that dropping an altitude from <math>B</math> to some foot <math>Q</math> on <math>\overline{CD}</math> gives <math>DQ = \frac{8}{5}</math> and therefore <math>CQ = \frac{42}{5}</math>. Seeing that <math>CQ = \frac{3}{5}\cdot BC</math>, we conclude that <math>\triangle QCB</math> is a 3-4-5 right triangle, so <math>BQ = \frac{56}{5}</math>. Then, the area of <math>\triangle BCD</math> is <math>\frac{1}{2}\cdot 10 \cdot \frac{56}{5} = 56</math>. Since <math>AP = CP</math>, points <math>A</math> and <math>C</math> are equidistant from <math>\overline{BD}</math>, so < | + | This means that dropping an altitude from <math>B</math> to some foot <math>Q</math> on <math>\overline{CD}</math> gives <math>DQ = \frac{8}{5}</math> and therefore <math>CQ = \frac{42}{5}</math>. Seeing that <math>CQ = \frac{3}{5}\cdot BC</math>, we conclude that <math>\triangle QCB</math> is a 3-4-5 right triangle, so <math>BQ = \frac{56}{5}</math>. Then, the area of <math>\triangle BCD</math> is <math>\frac{1}{2}\cdot 10 \cdot \frac{56}{5} = 56</math>. Since <math>AP = CP</math>, points <math>A</math> and <math>C</math> are equidistant from <math>\overline{BD}</math>, so <cmath>\left[\triangle ABD\right] = \left[\triangle CBD\right] = 56</cmath> and hence <cmath>\left[ABCD\right] = 56 + 56 = \boxed{112}</cmath> -kgator |
Revision as of 09:01, 5 September 2021
Contents
Problem
Let be a convex quadrilateral with , , and . Assume that the diagonals of intersect at point , and that the sum of the areas of triangles and equals the sum of the areas of triangles and . Find the area of quadrilateral .
Solution 1
For reference, , so is the longest of the four sides of . Let be the length of the altitude from to , and let be the length of the altitude from to . Then, the triangle area equation becomes
What an important finding! Note that the opposite sides and have equal length, and note that diagonal bisects diagonal . This is very similar to what happens if were a parallelogram with , so let's extend to point , such that is a parallelogram. In other words, and Now, let's examine . Since , the triangle is isosceles, and . Note that in parallelogram , and are congruent, so and thus Define , so .
We use the Law of Cosines on and :
Subtracting the second equation from the first yields
This means that dropping an altitude from to some foot on gives and therefore . Seeing that , we conclude that is a 3-4-5 right triangle, so . Then, the area of is . Since , points and are equidistant from , so and hence -kgator
Just to be complete -- and can actually be equal. In this case, , but must be equal to . We get the same result. -Mathdummy.
Solution 2 (Another way to get the middle point)
So, let the area of triangles , , , . Suppose and , then it is easy to show that Also, because we will have So So So So As a result, Then, we have Combine the condition we can find out that so is the midpoint of
~Solution by (Frank FYC)
Solution 3 (With yet another way to get the middle point)
Using the formula for the area of a triangle, But , so Hence (note that makes no difference here). Now, assume that ,, and . Using the cosine rule for triangles and , it is clear that
, or Likewise, using the cosine rule for triangles and , . It follows that . Now, denote angle by . Since , which simplifies to , giving . Plugging this back to equations (1), (2), and (3), it can be solved that . Then, the area of the quadrilateral is --Solution by MicGu
Solution 4
As in all other solutions, we can first find that either or , but it's an AIME problem, we can take , and assume the other choice will lead to the same result (which is true).
From , we have , => , therefore, By Law of Cosine, Square (1) and (2), add them, we get Solve, => , -Mathdummy
See Also
2018 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.