Difference between revisions of "2014 AIME II Problems/Problem 11"
m (→Solution) |
m (→Solution) |
||
Line 2: | Line 2: | ||
In <math>\triangle RED</math>, <math>\measuredangle DRE=75^{\circ}</math> and <math>\measuredangle RED=45^{\circ}</math>. <math>RD=1</math>. Let <math>M</math> be the midpoint of segment <math>\overline{RD}</math>. Point <math>C</math> lies on side <math>\overline{ED}</math> such that <math>\overline{RC}\perp\overline{EM}</math>. Extend segment <math>\overline{DE}</math> through <math>E</math> to point <math>A</math> such that <math>CA=AR</math>. Then <math>AE=\frac{a-\sqrt{b}}{c}</math>, where <math>a</math> and <math>c</math> are relatively prime positive integers, and <math>b</math> is a positive integer. Find <math>a+b+c</math>. | In <math>\triangle RED</math>, <math>\measuredangle DRE=75^{\circ}</math> and <math>\measuredangle RED=45^{\circ}</math>. <math>RD=1</math>. Let <math>M</math> be the midpoint of segment <math>\overline{RD}</math>. Point <math>C</math> lies on side <math>\overline{ED}</math> such that <math>\overline{RC}\perp\overline{EM}</math>. Extend segment <math>\overline{DE}</math> through <math>E</math> to point <math>A</math> such that <math>CA=AR</math>. Then <math>AE=\frac{a-\sqrt{b}}{c}</math>, where <math>a</math> and <math>c</math> are relatively prime positive integers, and <math>b</math> is a positive integer. Find <math>a+b+c</math>. | ||
− | ==Solution== | + | ==Solution 1== |
Let <math>P</math> be the foot of the perpendicular from <math>A</math> to <math>\overline{CR}</math>, so <math>\overline{AP}\parallel\overline{EM}</math>. Since triangle <math>ARC</math> is isosceles, <math>P</math> is the midpoint of <math>\overline{CR}</math>, and <math>\overline{PM}\parallel\overline{CD}</math>. Thus, <math>APME</math> is a parallelogram and <math>AE = PM = \frac{CD}{2}</math>. We can then use coordinates. Let <math>O</math> be the foot of altitude <math>RO</math> and set <math>O</math> as the origin. Now we notice special right triangles! In particular, <math>DO = \frac{1}{2}</math> and <math>EO = RO = \frac{\sqrt{3}}{2}</math>, so <math>D\left(\frac{1}{2}, 0\right)</math>, <math>E\left(-\frac{\sqrt{3}}{2}, 0\right)</math>, and <math>R\left(0, \frac{\sqrt{3}}{2}\right).</math> <math>M =</math> midpoint<math>(D, R) = \left(\frac{1}{4}, \frac{\sqrt{3}}{4}\right)</math> and the slope of <math>ME = \frac{\frac{\sqrt{3}}{4}}{\frac{1}{4} + \frac{\sqrt{3}}{2}} = \frac{\sqrt{3}}{1 + 2\sqrt{3}}</math>, so the slope of <math>RC = -\frac{1 + 2\sqrt{3}}{\sqrt{3}}.</math> Instead of finding the equation of the line, we use the definition of slope: for every <math>CO = x</math> to the left, we go <math>\frac{x(1 + 2\sqrt{3})}{\sqrt{3}} = \frac{\sqrt{3}}{2}</math> up. Thus, <math>x = \frac{\frac{3}{2}}{1 + 2\sqrt{3}} = \frac{3}{4\sqrt{3} + 2} = \frac{3(4\sqrt{3} - 2)}{44} = \frac{6\sqrt{3} - 3}{22}.</math> <math>DC = \frac{1}{2} - x = \frac{1}{2} - \frac{6\sqrt{3} - 3}{22} = \frac{14 - 6\sqrt{3}}{22}</math>, and <math>AE = \frac{7 - \sqrt{27}}{22}</math>, so the answer is <math>\boxed{056}</math>. | Let <math>P</math> be the foot of the perpendicular from <math>A</math> to <math>\overline{CR}</math>, so <math>\overline{AP}\parallel\overline{EM}</math>. Since triangle <math>ARC</math> is isosceles, <math>P</math> is the midpoint of <math>\overline{CR}</math>, and <math>\overline{PM}\parallel\overline{CD}</math>. Thus, <math>APME</math> is a parallelogram and <math>AE = PM = \frac{CD}{2}</math>. We can then use coordinates. Let <math>O</math> be the foot of altitude <math>RO</math> and set <math>O</math> as the origin. Now we notice special right triangles! In particular, <math>DO = \frac{1}{2}</math> and <math>EO = RO = \frac{\sqrt{3}}{2}</math>, so <math>D\left(\frac{1}{2}, 0\right)</math>, <math>E\left(-\frac{\sqrt{3}}{2}, 0\right)</math>, and <math>R\left(0, \frac{\sqrt{3}}{2}\right).</math> <math>M =</math> midpoint<math>(D, R) = \left(\frac{1}{4}, \frac{\sqrt{3}}{4}\right)</math> and the slope of <math>ME = \frac{\frac{\sqrt{3}}{4}}{\frac{1}{4} + \frac{\sqrt{3}}{2}} = \frac{\sqrt{3}}{1 + 2\sqrt{3}}</math>, so the slope of <math>RC = -\frac{1 + 2\sqrt{3}}{\sqrt{3}}.</math> Instead of finding the equation of the line, we use the definition of slope: for every <math>CO = x</math> to the left, we go <math>\frac{x(1 + 2\sqrt{3})}{\sqrt{3}} = \frac{\sqrt{3}}{2}</math> up. Thus, <math>x = \frac{\frac{3}{2}}{1 + 2\sqrt{3}} = \frac{3}{4\sqrt{3} + 2} = \frac{3(4\sqrt{3} - 2)}{44} = \frac{6\sqrt{3} - 3}{22}.</math> <math>DC = \frac{1}{2} - x = \frac{1}{2} - \frac{6\sqrt{3} - 3}{22} = \frac{14 - 6\sqrt{3}}{22}</math>, and <math>AE = \frac{7 - \sqrt{27}}{22}</math>, so the answer is <math>\boxed{056}</math>. | ||
Revision as of 16:28, 29 August 2021
Contents
Problem 11
In , and . . Let be the midpoint of segment . Point lies on side such that . Extend segment through to point such that . Then , where and are relatively prime positive integers, and is a positive integer. Find .
Solution 1
Let be the foot of the perpendicular from to , so . Since triangle is isosceles, is the midpoint of , and . Thus, is a parallelogram and . We can then use coordinates. Let be the foot of altitude and set as the origin. Now we notice special right triangles! In particular, and , so , , and midpoint and the slope of , so the slope of Instead of finding the equation of the line, we use the definition of slope: for every to the left, we go up. Thus, , and , so the answer is .
Solution 2
Let Meanwhile, because is similar to (angle, side, and side- and ratio), must be 2. Now, notice that is , because of the parallel segments and .
Now we just have to calculate . Using the Law of Sines, or perhaps using altitude , we get . , which equals
Finally, what is ? It comes out to .
We got the three sides. Now all that is left is using the Law of Cosines. There we can equate and solve for it.
Taking and using , of course, we find out (after some calculation) that . The step before? .
See also
2014 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.