Difference between revisions of "1991 AJHSME Problems/Problem 12"

(Solution)
Line 5: Line 5:
 
<math>\text{(A)}\ 3 \qquad \text{(B)}\ 6 \qquad \text{(C)}\ 1990 \qquad \text{(D)}\ 1991 \qquad \text{(E)}\ 1992</math>
 
<math>\text{(A)}\ 3 \qquad \text{(B)}\ 6 \qquad \text{(C)}\ 1990 \qquad \text{(D)}\ 1991 \qquad \text{(E)}\ 1992</math>
  
==Solution==
+
==Solution 1==
  
 
Note that for all integers <math>n\neq 0</math>,  
 
Note that for all integers <math>n\neq 0</math>,  
 
<cmath>\frac{(n-1)+n+(n+1)}{n}=3.</cmath>
 
<cmath>\frac{(n-1)+n+(n+1)}{n}=3.</cmath>
 
Thus, we must have <math>N=1991\rightarrow \boxed{\text{D}}</math>.
 
Thus, we must have <math>N=1991\rightarrow \boxed{\text{D}}</math>.
 +
 +
==Solution 2==
 +
As we know that <math>\frac{1990+1991+1992}{n}</math> has to be some multiple of <math>\frac{2+3+4}{3}</math>, then we know that the first equation is <math>995</math>(1990/2) times bigger than the second one(in my solution), so the bottom must be <math>3x995=\boxed{\text{D}}</math>
  
 
==See Also==
 
==See Also==

Revision as of 10:27, 28 August 2021

Problem

If $\frac{2+3+4}{3}=\frac{1990+1991+1992}{N}$, then $N=$

$\text{(A)}\ 3 \qquad \text{(B)}\ 6 \qquad \text{(C)}\ 1990 \qquad \text{(D)}\ 1991 \qquad \text{(E)}\ 1992$

Solution 1

Note that for all integers $n\neq 0$, \[\frac{(n-1)+n+(n+1)}{n}=3.\] Thus, we must have $N=1991\rightarrow \boxed{\text{D}}$.

Solution 2

As we know that $\frac{1990+1991+1992}{n}$ has to be some multiple of $\frac{2+3+4}{3}$, then we know that the first equation is $995$(1990/2) times bigger than the second one(in my solution), so the bottom must be $3x995=\boxed{\text{D}}$

See Also

1991 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png