Difference between revisions of "2011 AMC 8 Problems/Problem 3"
m (→Solution 2) |
|||
Line 41: | Line 41: | ||
==Solution 2== | ==Solution 2== | ||
− | If we did not want to draw a diagram | + | If we did not want to draw a diagram though that is probably simpler in this case, we can imagine the last border of black tiles. We see that each side length (if the side length of a square is <math>1</math>) increases by <math>2</math> each time we go out one layer. Therefore, we know that the next border will have a side length of <math>7</math>. That border has <math>7^2-5^2=24</math> black squares in it. The other black border has <math>3^2-1^2=8</math> squares in it, so there are <math>32</math> black squares in all. The other ones must all be white, so there are <math>49-32=17</math> white squares. Thus, we get our answer of <math>\boxed{\textbf{(D) }32:17}</math>. |
− | |||
==See Also== | ==See Also== | ||
{{AMC8 box|year=2011|num-b=2|num-a=4}} | {{AMC8 box|year=2011|num-b=2|num-a=4}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 18:47, 17 August 2021
Contents
Problem
Extend the square pattern of 8 black and 17 white square tiles by attaching a border of black tiles around the square. What is the ratio of black tiles to white tiles in the extended pattern?
Solution 1
One way of approaching this is drawing the next circle of boxes around the current square. We can now count the number of black and white tiles; 32 black tiles and 17 white tiles. This means the answer is .
Solution 2
If we did not want to draw a diagram though that is probably simpler in this case, we can imagine the last border of black tiles. We see that each side length (if the side length of a square is ) increases by each time we go out one layer. Therefore, we know that the next border will have a side length of . That border has black squares in it. The other black border has squares in it, so there are black squares in all. The other ones must all be white, so there are white squares. Thus, we get our answer of .
See Also
2011 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.