Difference between revisions of "1984 AIME Problems/Problem 9"

(See also)
(Solution: img)
Line 3: Line 3:
  
 
== Solution ==
 
== Solution ==
{{image}}
+
[[Image:1984_AIME-9.png]]
  
Position face <math>ABC</math> on the bottom. Since <math>[\triangle ABD] = 12 = \frac{1}{2} AB \cdot h_{ABD}</math>, we find that <math>h_{ABD} = 8</math>. The height of <math>ABD</math> forms a <math>30-60-90</math> with the height of the tetrahedron, so <math>h = \frac{1}{2} 8 = 4</math>. The volume of the tetrahedron is thus <math>\frac{1}{3}Bh = \frac{1}{3} 15 \cdot 4 = 020</math>.  
+
Position face <math>ABC</math> on the bottom. Since <math>[\triangle ABD] = 12 = \frac{1}{2} AB \cdot h_{ABD}</math>, we find that <math>h_{ABD} = 8</math>. The height of <math>ABD</math> forms a <math>30-60-90</math> with the height of the tetrahedron, so <math>h = \frac{1}{2} 8 = 4</math>. The volume of the tetrahedron is thus <math>\frac{1}{3}Bh = \frac{1}{3} 15 \cdot 4 = 020</math>.
  
 
== See also ==
 
== See also ==

Revision as of 19:26, 10 September 2007

Problem

In tetrahedron $\displaystyle ABCD$, edge $\displaystyle AB$ has length 3 cm. The area of face $\displaystyle ABC$ is $\displaystyle 15\mbox{cm}^2$ and the area of face $\displaystyle ABD$ is $\displaystyle 12 \mbox { cm}^2$. These two faces meet each other at a $30^\circ$ angle. Find the volume of the tetrahedron in $\displaystyle \mbox{cm}^3$.

Solution

1984 AIME-9.png

Position face $ABC$ on the bottom. Since $[\triangle ABD] = 12 = \frac{1}{2} AB \cdot h_{ABD}$, we find that $h_{ABD} = 8$. The height of $ABD$ forms a $30-60-90$ with the height of the tetrahedron, so $h = \frac{1}{2} 8 = 4$. The volume of the tetrahedron is thus $\frac{1}{3}Bh = \frac{1}{3} 15 \cdot 4 = 020$.

See also

1984 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions