Difference between revisions of "2021 AMC 10A Problems/Problem 1"

m (Video Solution 1 (Lightening Fast))
Line 30: Line 30:
 
-[[User:PureSwag|PureSwag]]
 
-[[User:PureSwag|PureSwag]]
  
==Video Solution 1 (Lightening Fast)==
+
==Video Solution 1 (Lightning Fast)==
 
https://youtu.be/cAMg15KhK6E
 
https://youtu.be/cAMg15KhK6E
  

Revision as of 18:14, 13 August 2021

Problem

What is the value of \[(2^2-2)-(3^2-3)+(4^2-4)\]

$\textbf{(A) } 1 \qquad\textbf{(B) } 2 \qquad\textbf{(C) } 5 \qquad\textbf{(D) } 8 \qquad\textbf{(E) } 12$

Solution 1

$(4-2)-(9-3)+(16-4)=2-6+12=8.$ This corresponds to $\boxed{\textbf{(D) } 8}.$

-happykeeper

Solution 2

We have \begin{align*} \left(2^2-2\right)-\left(3^2-3\right)+\left(4^2-4\right) &= 2(2-1)-3(3-1)+4(4-1) \\ &= 2(1)-3(2)+4(3) \\ &= 2-6+12 \\ &= \boxed{\textbf{(D) } 8}. \end{align*} ~MRENTHUSIASM

Solution 3 (Overkill: Just for Fun)

We have \begin{align*} (2^2-2)-(3^2-3)+(4^2-4) &= 2^2+4^2-3^2-2+3-4 \\ &=2^2+(4-3)(4+3)-3 \\ &=2^2+7-3=2^2+4 \\ &=4\cdot 2 \\ &=\boxed{\textbf{(D) } 8}. \end{align*} -PureSwag

Video Solution 1 (Lightning Fast)

https://youtu.be/cAMg15KhK6E

~ Education, the Study of everything

Video Solution 2

https://youtu.be/cAMg15KhK6E

Video Solution 3 (Very Very Quick Computation)

https://www.youtube.com/watch?v=m0_UMI2mnZs&list=PLexHyfQ8DMuKqltG3cHT7Di4jhVl6L4YJ&index=2 ~North America Mathematic Contest Go Go Go

Video Solution 4 (Quick Computation)

https://youtu.be/C3n2hgBhyXc?t=37 ~ThePuzzlr

Video Solution 5 (Arithmetic Computation)

https://youtu.be/0VvM_f-IDvE

~ pi_is_3.14

Video Solution 6

https://youtu.be/4dkzuRHJieQ

~savannahsolver

Video Solution 7

https://youtu.be/50CThrk3RcM

~IceMatrix

Video Solution 8 (Problems 1-3)

https://youtu.be/CupJpUzKPB0

~MathWithPi

Video Solution 9

https://youtu.be/slVBYmcDMOI

~TheLearningRoyal

See Also

2021 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png