Difference between revisions of "2016 AMC 10B Problems/Problem 20"
(→Solution 2: Geometric) |
|||
Line 15: | Line 15: | ||
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ real xmin = -7., xmax = 9., ymin = -7., ymax = 9.6; /* image dimensions */ | pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ real xmin = -7., xmax = 9., ymin = -7., ymax = 9.6; /* image dimensions */ | ||
pen xdxdff = rgb(0.49019607843137253,50.49019607843137253,1.); pen uuuuuu = rgb(0.666666666,0.26666666666666666,0.26666666666666666); pen qqzzff = rgb(0.,0.6,1.); pen ffwwqq = rgb(1.,0.4,0.); pen qqwuqq = rgb(0.,0.39215686274509803,0.); | pen xdxdff = rgb(0.49019607843137253,50.49019607843137253,1.); pen uuuuuu = rgb(0.666666666,0.26666666666666666,0.26666666666666666); pen qqzzff = rgb(0.,0.6,1.); pen ffwwqq = rgb(1.,0.4,0.); pen qqwuqq = rgb(0.,0.39215686274509803,0.); | ||
− | pair O = (3.,0.), A = ( | + | pair O = (3.,0.), A = (2.,2.), B = (2.,1.), C = (4.203155585,5.592712848525), D = (5.,4.), F = (-3.999634206191805,-5.999512274922407), G = (-3.999634206191812,-5.9995122749224175); |
/* by adihaya */ | /* by adihaya */ | ||
draw((2.482656878,0.)---(4.482568783,0.48268779)--(2.,0.48272202065687797)--B--cycle, qqwuqq); | draw((2.482656878,0.)---(4.482568783,0.48268779)--(2.,0.48272202065687797)--B--cycle, qqwuqq); |
Revision as of 16:02, 22 July 2021
Contents
Problem
A dilation of the plane—that is, a size transformation with a positive scale factor—sends the circle of radius centered at to the circle of radius centered at . What distance does the origin , move under this transformation?
Solution 1: Algebraic
The center of dilation must lie on the line , which can be expressed as . Note that the center of dilation must have an -coordinate less than ; if the -coordinate were otherwise, then the circle under the transformation would not have an increased -coordinate in the coordinate plane. Also, the ratio of dilation must be equal to , which is the ratio of the radii of the circles. Thus, we are looking for a point such that (for the -coordinates), and . We do not have to include absolute value symbols because we know that the center of dilation has a lower -coordinate, and hence a lower -coordinate, from our reasoning above. Solving the two equations, we get and . This means that any point on the plane will dilate to the point , which means that the point dilates to . Thus, the origin moves units.
Solution 2: Geometric
Using analytic geometry, we find that the center of dilation is at and the coefficient/factor is . Then, we see that the origin is from the center, and will be from it afterwards.
Thus, it will move .
Solution 3: Logic and Geometry
Using the ratios of radii of the circles, , we find that the scale factor is . If the origin had not moved, this indicates that the center of the circle would be , simply because of . Since the center has moved from to , we apply the distance formula and get: .
Solution 4: Simple and Practical
Start with the size transformation. Transforming the circle from to would mean the origin point now transforms into the point . Now apply the position shift: to the right and up. This gets you the point . Now simply apply the Pythagorean theorem with the points and to find the requested distance.
Solution 5: Using the Axes
Before dilation, notice that the two axes are tangent to the circle with center . Using this, we can draw new axes tangent to the radius 3 circle with center , resulting in a "new origin" that is 3 units left and 3 units down from the center , or . Using the distance formula, the distance from and is . ~Mightyeagle
See Also
2016 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.