Difference between revisions of "Derivative/Formulas"

(List of formulas)
(List of formulas)
Line 4: Line 4:
 
| <math>\frac d{dx}(cf(x)) = c\left(\frac d{dx} f(x)\right)</math>
 
| <math>\frac d{dx}(cf(x)) = c\left(\frac d{dx} f(x)\right)</math>
 
|-
 
|-
| <math>(f(x)+g(x))' = f'(x) + g'(x)</math>
+
| <math>(f(x) + g(x))' = f'(x) + g'(x)</math>
 +
|-
 +
| <math>(f(x)-g(x))'=f'(x)-g'(x)</math>
 +
|-
 +
| <math>\left(u(x)\times v(x)\right)'=u(x)v'(x)+u'(x)v(x)</math>
 
|-
 
|-
 
| <math>\left(\frac{u(x)}{v(x)}\right)' = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}</math>
 
| <math>\left(\frac{u(x)}{v(x)}\right)' = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}</math>
Line 11: Line 15:
 
|-
 
|-
 
| <math>\frac d{dx} x^n = n x^{n-1}</math>
 
| <math>\frac d{dx} x^n = n x^{n-1}</math>
 +
|-
 +
| <math>\frac d{dx} (f(x))^n =n f(x)^{n-1} f'(x)</math>
 
|-
 
|-
 
| <math>\frac d{dx} \sin x = \cos x</math>
 
| <math>\frac d{dx} \sin x = \cos x</math>

Revision as of 19:15, 7 September 2007

List of formulas

$\frac d{dx}(cf(x)) = c\left(\frac d{dx} f(x)\right)$
$(f(x) + g(x))' = f'(x) + g'(x)$
$(f(x)-g(x))'=f'(x)-g'(x)$
$\left(u(x)\times v(x)\right)'=u(x)v'(x)+u'(x)v(x)$
$\left(\frac{u(x)}{v(x)}\right)' = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}$
$(f(g(x)))' = f'(g(x))g'(x)$
$\frac d{dx} x^n = n x^{n-1}$
$\frac d{dx} (f(x))^n =n f(x)^{n-1} f'(x)$
$\frac d{dx} \sin x = \cos x$
$\frac d{dx} \cos x = -\sin x$
$\frac d{dx} \tan x = \sec^2 x$
$\frac d{dx} \sec x = \sec x \tan x$
$\frac d{dx} \csc x = -\csc x\cot x$
$\frac d{dx} \cot x = -\csc^2 x$
$\frac d{dx} e^x = e^x$
$\frac d{dx} a^x = (\ln a) a^x$
$\frac d{dx} \ln x = \frac 1x$
$\frac d{dx} \log_b x =\frac{\log_b e}{x}$
$\frac d{dx} \arcsin x = \frac 1{\sqrt{1-x^2}}$
$\frac d{dx} \arccos x = -\frac 1{\sqrt{1-x^2}}$
$\frac d{dx} \arctan x = \frac 1{1+x^2}$
$\frac d{dx} \mathrm{arcsec \ } x = \frac 1{\mid x \mid\sqrt{x^2-1}}$
$\frac d{dx} \mathrm{arccsc \ } x = - \frac 1{x\sqrt{x^2 - 1}}$
$\frac d{dx} \arccot x = - \frac 1{1+x^2}$ (Error compiling LaTeX. Unknown error_msg)

See also