Difference between revisions of "1956 AHSME Problems/Problem 49"
m |
|||
Line 1: | Line 1: | ||
− | Solution 1 | + | ==Problem== |
+ | Triangle <math>PAB</math> is formed by three tangents to circle <math>O</math> and <math>\angle APB = 40^{\circ}</math>; then <math>\angle AOB</math> equals: | ||
+ | |||
+ | <math>\textbf{(A)}\ 45^{\circ}\qquad \textbf{(B)}\ 50^{\circ}\qquad \textbf{(C)}\ 55^{\circ}\qquad \textbf{(D)}\ 60^{\circ}\qquad \textbf{(E)}\ 70^{\circ}</math> | ||
+ | |||
+ | |||
+ | |||
+ | ==Solution 1== | ||
First, from triangle <math>ABO</math>, <math>\angle AOB = 180^\circ - \angle BAO - \angle ABO</math>. Note that <math>AO</math> bisects <math>\angle BAT</math> (to see this, draw radii from <math>O</math> to <math>AB</math> and <math>AT,</math> creating two congruent right triangles), so <math>\angle BAO = \angle BAT/2</math>. Similarly, <math>\angle ABO = \angle ABR/2</math>. | First, from triangle <math>ABO</math>, <math>\angle AOB = 180^\circ - \angle BAO - \angle ABO</math>. Note that <math>AO</math> bisects <math>\angle BAT</math> (to see this, draw radii from <math>O</math> to <math>AB</math> and <math>AT,</math> creating two congruent right triangles), so <math>\angle BAO = \angle BAT/2</math>. Similarly, <math>\angle ABO = \angle ABR/2</math>. |
Revision as of 18:55, 18 July 2021
Problem
Triangle is formed by three tangents to circle and ; then equals:
Solution 1
First, from triangle , . Note that bisects (to see this, draw radii from to and creating two congruent right triangles), so . Similarly, .
Also, , and . Hence,
Finally, from triangle , , so