Difference between revisions of "2021 JMPSC Sprint Problems/Problem 11"

(Solution)
Line 4: Line 4:
 
==Solution==
 
==Solution==
 
The perfect squares are from <math>3^2</math> to <math>50^2</math>. Therefore, the answer is the amount of positive integers between <math>3</math> and <math>50</math>, inclusive. This is just <math>50-3+1=\boxed{48}</math>.
 
The perfect squares are from <math>3^2</math> to <math>50^2</math>. Therefore, the answer is the amount of positive integers between <math>3</math> and <math>50</math>, inclusive. This is just <math>50-3+1=\boxed{48}</math>.
 +
 +
 +
 +
==See also==
 +
#[[2021 JMPSC Sprint Problems|Other 2021 JMPSC Sprint Problems]]
 +
#[[2021 JMPSC Sprint Answer Key|2021 JMPSC Sprint Answer Key]]
 +
#[[JMPSC Problems and Solutions|All JMPSC Problems and Solutions]]
 +
{{JMPSC Notice}}

Revision as of 16:14, 11 July 2021

Problem

How many numbers are in the finite sequence of consecutive perfect squares \[9, 16, 25, \ldots , 2500?\]

Solution

The perfect squares are from $3^2$ to $50^2$. Therefore, the answer is the amount of positive integers between $3$ and $50$, inclusive. This is just $50-3+1=\boxed{48}$.


See also

  1. Other 2021 JMPSC Sprint Problems
  2. 2021 JMPSC Sprint Answer Key
  3. All JMPSC Problems and Solutions

The problems on this page are copyrighted by the Junior Mathematicians' Problem Solving Competition. JMPSC.png