Difference between revisions of "2021 JMPSC Accuracy Problems/Problem 14"
(Created page with "==Problem== What is the leftmost digit of the product <cmath>\underbrace{161616 \cdots 16}_{100 \text{ digits }} \times \underbrace{252525 \cdots 25}_{100 \text{ digits }}?</c...") |
(→Solution) |
||
Line 3: | Line 3: | ||
==Solution== | ==Solution== | ||
− | + | We notice that | |
+ | <cmath>16000\cdots \times 25000\cdots = 16 \times 25 \times 10^{198} = 400 * 10^{198}</cmath> | ||
+ | In addition, we notice that | ||
+ | <cmath>16200\cdots \times 25300\cdots = 162 \times 253 \times 10^{194} = 40986 \times 10^{194}</cmath> | ||
+ | |||
+ | Since | ||
+ | <cmath>16000\cdots \times 25000\cdots < \underbrace{161616 \cdots 16}_{100 \text{ digits }} \times \underbrace{252525 \cdots 25}_{100 \text{ digits }} < 16200\cdots \times 25300\cdots</cmath> | ||
+ | |||
+ | We conclude that the leftmost digit must be <math>\boxed{4}</math>. |
Revision as of 21:52, 10 July 2021
Problem
What is the leftmost digit of the product
Solution
We notice that In addition, we notice that
Since
We conclude that the leftmost digit must be .