Difference between revisions of "2021 JMPSC Accuracy Problems/Problem 5"

(Created page with "==Problem== Let <math>n!=n \cdot (n-1) \cdot (n-2) \cdots 2 \cdot 1</math> for all positive integers <math>n</math>. Find the value of <math>x</math> that satisfies <cmath>\fr...")
 
(Solution)
Line 3: Line 3:
  
 
==Solution==
 
==Solution==
asdf
+
We can multiply both sides by <math>2022!</math> to get rid of the fractions
 +
<cmath>\frac{5!x}{2022!}=\frac{20}{2021!}</cmath>
 +
<cmath>5!x=20 \cdot 2022</cmath>
 +
<cmath>120x=(120)(337)</cmath>
 +
<cmath>x=\boxed{337}</cmath>
 +
 
 +
~Bradygho

Revision as of 21:13, 10 July 2021

Problem

Let $n!=n \cdot (n-1) \cdot (n-2) \cdots 2 \cdot 1$ for all positive integers $n$. Find the value of $x$ that satisfies \[\frac{5!x}{2022!}=\frac{20}{2021!}.\]

Solution

We can multiply both sides by $2022!$ to get rid of the fractions \[\frac{5!x}{2022!}=\frac{20}{2021!}\] \[5!x=20 \cdot 2022\] \[120x=(120)(337)\] \[x=\boxed{337}\]

~Bradygho