Difference between revisions of "1963 IMO Problems/Problem 5"
(→Solution 2) |
(→Solution 2) |
||
Line 36: | Line 36: | ||
Clearly <math>b\neq -1</math>, so <math>8b^3-4b^2-4b+1=0</math>. This proves the result. <math>\blacksquare</math> | Clearly <math>b\neq -1</math>, so <math>8b^3-4b^2-4b+1=0</math>. This proves the result. <math>\blacksquare</math> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==See Also== | ==See Also== | ||
{{IMO box|year=1963|num-b=4|num-a=6}} | {{IMO box|year=1963|num-b=4|num-a=6}} |
Revision as of 19:40, 8 July 2021
Problem
Prove that .
Solutions
Solution 1
Let . We have
Then, by product-sum formulae, we have
Thus .
Solution 2
Let and . From the addition formulae, we have
From the Trigonometric Identity, , so
We must prove that . It suffices to show that .
Now note that . We can find these in terms of and :
Therefore . Note that this can be factored:
Clearly , so . This proves the result.
See Also
1963 IMO (Problems) • Resources | ||
Preceded by Problem 4 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 6 |
All IMO Problems and Solutions |