Difference between revisions of "1972 AHSME Problems/Problem 32"
Varahamihir (talk | contribs) |
m |
||
Line 1: | Line 1: | ||
+ | == Problem == | ||
+ | |||
+ | <asy> | ||
+ | real t=pi/12;real u=8*t; | ||
+ | real cu=cos(u);real su=sin(u); | ||
+ | draw(unitcircle); | ||
+ | draw((cos(-t),sin(-t))--(cos(13*t),sin(13*t))); | ||
+ | draw((cu,su)--(cu,-su)); | ||
+ | label("A",(cos(13*t),sin(13*t)),W); | ||
+ | label("B",(cos(-t),sin(-t)),E); | ||
+ | label("C",(cu,su),N); | ||
+ | label("D",(cu,-su),S); | ||
+ | label("E",(cu,sin(-t)),NE); | ||
+ | label("2",((cu-1)/2,sin(-t)),N); | ||
+ | label("6",((cu+1)/2,sin(-t)),N); | ||
+ | label("3",(cu,(sin(-t)-su)/2),E); | ||
+ | //Credit to Zimbalono for the diagram</asy> | ||
+ | |||
+ | Chords <math>AB</math> and <math>CD</math> in the circle above intersect at E and are perpendicular to each other. | ||
+ | If segments <math>AE, EB</math>, and <math>ED</math> have measures <math>2, 3</math>, and <math>6</math> respectively, then the length of the diameter of the circle is | ||
+ | |||
+ | <math>\textbf{(A) }4\sqrt{5}\qquad | ||
+ | \textbf{(B) }\sqrt{65}\qquad | ||
+ | \textbf{(C) }2\sqrt{17}\qquad | ||
+ | \textbf{(D) }3\sqrt{7}\qquad | ||
+ | \textbf{(E) }6\sqrt{2} </math> | ||
+ | == Solution == | ||
+ | |||
<math>\boxed{B}</math> | <math>\boxed{B}</math> |
Latest revision as of 13:11, 23 June 2021
Problem
Chords and in the circle above intersect at E and are perpendicular to each other. If segments , and have measures , and respectively, then the length of the diameter of the circle is
Solution