Difference between revisions of "1978 AHSME Problems/Problem 24"
(Created page with "Let the geometric progression be <math>a,</math> <math>ar,</math> <math>ar^2,</math> so <math>a = x(y - z)</math>, <math>ar = y(z - x)</math>, and <math>ar^2 = z(x - y).</math...") |
|||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
+ | If the distinct non-zero numbers <math>x ( y - z),~ y(z - x),~ z(x - y )</math> form a geometric progression with common ratio <math>r</math>, then <math>r</math> satisfies the equation | ||
+ | |||
+ | <math>\textbf{(A) }r^2+r+1=0\qquad \textbf{(B) }r^2-r+1=0\qquad \textbf{(C) }r^4+r^2-1=0\qquad\\ \textbf{(D) }(r+1)^4+r=0\qquad \textbf{(E) }(r-1)^4+r=0</math> | ||
+ | ==Solution== | ||
Let the geometric progression be <math>a,</math> <math>ar,</math> <math>ar^2,</math> so <math>a = x(y - z)</math>, <math>ar = y(z - x)</math>, and <math>ar^2 = z(x - y).</math> Adding these equations, we get | Let the geometric progression be <math>a,</math> <math>ar,</math> <math>ar^2,</math> so <math>a = x(y - z)</math>, <math>ar = y(z - x)</math>, and <math>ar^2 = z(x - y).</math> Adding these equations, we get | ||
<cmath>a + ar + ar^2 = xy - xz + yz - xy + xz - yz = 0.</cmath> | <cmath>a + ar + ar^2 = xy - xz + yz - xy + xz - yz = 0.</cmath> | ||
Since <math>a</math> is nonzero, we can divide by <math>a</math>, to get <math>\boxed{r^2 + r + 1 = 0}</math>. The answer is (A). | Since <math>a</math> is nonzero, we can divide by <math>a</math>, to get <math>\boxed{r^2 + r + 1 = 0}</math>. The answer is (A). |
Latest revision as of 13:06, 20 June 2021
Problem
If the distinct non-zero numbers form a geometric progression with common ratio , then satisfies the equation
Solution
Let the geometric progression be so , , and Adding these equations, we get Since is nonzero, we can divide by , to get . The answer is (A).