Difference between revisions of "LaTeX:Symbols"
(→Bracketing Symbols) |
(→Bracketing Symbols) |
||
Line 225: | Line 225: | ||
!Symbol !! Command!!Symbol !! Command!!Symbol !! Command | !Symbol !! Command!!Symbol !! Command!!Symbol !! Command | ||
|- | |- | ||
− | |<math>\{</math>||\{||<math>\}</math>||\}||<math>\|</math>||\| | + | |<math>\{</math>||\{||<math>\}</math>||\}||<math>\|</math>||<nowiki>\|</nowiki> |
|- | |- | ||
| <math>\backslash</math>||\backslash||<math>\lfloor</math>||\lfloor||<math>\rfloor</math>||\rfloor | | <math>\backslash</math>||\backslash||<math>\lfloor</math>||\lfloor||<math>\rfloor</math>||\rfloor | ||
Line 233: | Line 233: | ||
| <math>\rangle</math>||\rangle | | <math>\rangle</math>||\rangle | ||
|} | |} | ||
+ | You might notice that if you use any of these to typeset an expression that is vertically large, like | ||
+ | |||
+ | \displaystyle (1 + \frac{a}{x} )^2 | ||
+ | |||
+ | the parentheses don't come out the right size: | ||
+ | [[Image:badparen1.gif]] | ||
+ | If we put \left and \right before the relevant parentheses, we get a prettier expression: | ||
+ | |||
+ | \displaystyle \left(1 + \frac{a}{x} \right)^2 | ||
+ | |||
+ | gives | ||
+ | |||
+ | <math>\left(1 + \frac{a}{x} \right)^2</math> | ||
+ | |||
+ | \left and \right can also be used to resize the following symbols: | ||
==Multi-Size Symbols== | ==Multi-Size Symbols== |
Revision as of 21:59, 12 July 2007
LaTeX |
About - Getting Started - Diagrams - Symbols - Downloads - Basics - Math - Examples - Pictures - Layout - Commands - Packages - Help |
This article will provide a short list of commonly used LaTeX symbols.
Contents
Operators
Symbol | Command | Symbol | Command | Symbol | Command |
---|---|---|---|---|---|
\pm | \mp | \times | |||
\div | \cdot | \ast | |||
\star | \dagger | \ddagger | |||
\amalg | \cap | \cup | |||
\uplus | \sqcap | \sqcup | |||
\vee | \wedge | \oplus | |||
\ominus | \otimes | \circ | |||
\bullet | \diamond | \lhd | |||
\rhd | \unlhd | \unrhd | |||
\oslash | \odot | \bigcirc | |||
\triangleleft | \Diamond | \bigtriangleup | |||
\bigtriangledown | \Box | \triangleright | |||
\setminus | \wr |
Relations
Symbol | Command | Symbol | Command | Symbol | Command |
---|---|---|---|---|---|
\le | \ge | \neq | |||
\sim | \ll | \gg | |||
\doteq | \simeq | \subset | |||
\supset | \approx | \asymp | |||
\subseteq | \supseteq | \cong | |||
\smile | \sqsubset | \sqsupset | |||
\equiv | \frown | \sqsubseteq | |||
\sqsupseteq | \propto | \bowtie | |||
\in | \ni | \prec | |||
\succ | \vdash | \dashv | |||
\preceq | \succeq | \models | |||
\perp | \parallel | \| | |||
\mid |
Negations of many of these relations can be formed by just putting \not before the symbol, or by slipping an n between the \ and the word. Here are a few examples, plus a few other negations; it works for many of the others as well.
Symbol | Command | Symbol | Command | Symbol | Command |
---|---|---|---|---|---|
\nmid | \nleq | \ngeq | |||
\nsim | \ncong | \nparallel | |||
\not< | \not> | \not= | |||
\not\le | \not\ge | \not\sim | |||
\not\approx | \not\cong | \not\equiv | |||
\not\parallel | \nless | \ngtr | |||
\lneq | \gneq | \lnsim | |||
\lneqq | \gneqq |
Greek Letters
Symbol | Command | Symbol | Command | Symbol | Command | Symbol | Command |
---|---|---|---|---|---|---|---|
\alpha | \beta | \gamma | \delta | ||||
\epsilon | \varepsilon | \zeta | \eta | ||||
\theta | \vartheta | \iota | \kappa | ||||
\lambda | \mu | \nu | \xi | ||||
\pi | \varpi | \rho | \varrho | ||||
\sigma | \varsigma | \tau | \upsilon | ||||
\phi | \varphi | \chi | \psi | ||||
\omega |
Symbol | Command | Symbol | Command | Symbol | Command | Symbol | Command |
---|---|---|---|---|---|---|---|
\Gamma | \Delta | \Theta | \Lambda | ||||
\Xi | \Pi | \Sigma | \Upsilon | ||||
\Phi | \Psi |
Arrows
Symbol | Command | Symbol | Command |
---|---|---|---|
\gets | \to | ||
\leftarrow | \Leftarrow | ||
\rightarrow | \Rightarrow | ||
\leftrightarrow | \Leftrightarrow | ||
\mapsto | \hookleftarrow | ||
\leftharpoonup | \leftharpoondown | ||
\rightleftharpoons | \longleftarrow | ||
\Longleftarrow | \longrightarrow | ||
\Longrightarrow | \longleftrightarrow | ||
\Longleftrightarrow | \longmapsto | ||
\hookrightarrow | \rightharpoonup | ||
\rightharpoondown | \leadsto | ||
\uparrow | \Uparrow | ||
\downarrow | \Downarrow | ||
\updownarrow | \Updownarrow | ||
\nearrow | \searrow | ||
\swarrow | \nwarrow |
Dots
Symbol | Command | Symbol | Command | Symbol | Command | Symbol | Command |
---|---|---|---|---|---|---|---|
\ldots 2 | \vdots | \cdots 2 | \ddots |
(The '2's after \ldots and \cdots are only present to make the distinction between the two clear.)
Accents
Symbol | Command | Symbol | Command | Symbol | Command |
---|---|---|---|---|---|
\hat{x} | \check{x} | \dot{x} | |||
\breve{x} | \acute{x} | \ddot{x} | |||
\grave{x} | \tilde{x} | \mathring{x} | |||
\ | \bar{x} | \vec{x} |
When applying accents to i and j, you can use \imath and \jmath to keep the dots from interfering with the accents:
Symbol | Command | Symbol | Command |
---|---|---|---|
\vec{\jmath} | \tilde{\imath} |
\tilde and \hat have wide versions that allow you to accent an expression:
Symbol | Command | Symbol | Command |
---|---|---|---|
\widehat{3+x} | \widetilde{abc} |
Others
Symbol | Command | Symbol | Command | Symbol | Command |
---|---|---|---|---|---|
\infty | \triangle | \angle | |||
\aleph | \hbar | \imath | |||
\jmath | \ell | \wp | |||
\Re | \Im | \mho | |||
\prime | \emptyset | \nabla | |||
\surd | \partial | \top | |||
\bot | \vdash | \dashv | |||
\forall | \exists | \neg | |||
\flat | \natural | \sharp | |||
\backslash | \Box | \Diamond | |||
\clubsuit | \diamondsuit | \heartsuit | |||
\spadesuit | \Join | \blacksquare |
Bracketing Symbols
In mathematics, sometimes we need to enclose expressions in brackets or braces or parentheses. Some of these work just as you'd imagine in LaTeX; type ( and ) for parentheses, [ and ] for brackets, and | and | for absolute value. However, other symbols have special commands:
Symbol | Command | Symbol | Command | Symbol | Command |
---|---|---|---|---|---|
\{ | \} | \| | |||
\backslash | \lfloor | \rfloor | |||
\lceil | \rceil | \langle | |||
\rangle |
You might notice that if you use any of these to typeset an expression that is vertically large, like
\displaystyle (1 + \frac{a}{x} )^2
the parentheses don't come out the right size: If we put \left and \right before the relevant parentheses, we get a prettier expression:
\displaystyle \left(1 + \frac{a}{x} \right)^2
gives
\left and \right can also be used to resize the following symbols:
Multi-Size Symbols
\boxed{Answer} produces a box around your Answer.
\frac{a}{b} produces a fraction with numerator and denominator .
^\circ produces the degrees symbol.
\text{Your Text Here} produces text within LaTeX. .
\mbox{Your Text Here} Produces text within LaTeX
\sqrt{x} produces the square root of .
\sqrt[n]{x} produces the th root of .
a\equiv b \pmod{c} produces is equivalent to mod . See Modular Arithmetic
\binom{9}{3} produces 9 choose 3.
{n}\choose{r} produces n choose r.
x^{y} produces x to the power of y.
x_{y} produces x with y in subscript.
\rightarrow produces an arrow to the right.
\leftarrow produces an arrow to the left.
\uparrow produces an arrow pointing upwards.
\downarrow produces an arrow pointing downwards.
\updownarrow produces an arrow pointing up and down.
\ge produces a greater than or equal to sign.
\le produces a less than or equal to sign.
\not> produces a not greater than sign.
\not< produces a not less than sign.
\not\ge produces a not greater than or equal to sign.
\not\le produces a not less than or equal to sign.
\neq produces a not equal to sign.
\infty produces an infinity sign.
\perp produces a perpendicular sign.
\angle produces an angle sign.
\triangle produces a triangle.
\ldots produces three dots at the bottom of a line (ellipsis).
\cdots produces three dots in the middle of a line (as in a series sum or product).
\times produces an as used in multiplication
\otimes produces a
Also note that you do not have to use braces, "{" and "}", when you only want one character in the operation.
Examples
- x^y is the same as x^{y}.
- x_y is the same as x_{y}.
- BUT x^10 is not the same as x^{10}. instead of .