Difference between revisions of "1982 AHSME Problems/Problem 14"
m (→1982 AHSME Problems/Problem 14) |
m (→Problem 14:) |
||
Line 1: | Line 1: | ||
− | ==Problem 14 | + | ==Problem 14== |
In the adjoining figure, points <math>B</math> and <math>C</math> lie on line segment <math>AD</math>, and <math>AB, BC</math>, and <math>CD</math> are diameters of circle <math>O, N</math>, and <math>P</math>, respectively. Circles <math>O, N</math>, and <math>P</math> all have radius <math>15</math> and the line <math>AG</math> is tangent to circle <math>P</math> at <math>G</math>. If <math>AG</math> intersects circle <math>N</math> at points <math>E</math> and <math>F</math>, then chord <math>EF</math> has length | In the adjoining figure, points <math>B</math> and <math>C</math> lie on line segment <math>AD</math>, and <math>AB, BC</math>, and <math>CD</math> are diameters of circle <math>O, N</math>, and <math>P</math>, respectively. Circles <math>O, N</math>, and <math>P</math> all have radius <math>15</math> and the line <math>AG</math> is tangent to circle <math>P</math> at <math>G</math>. If <math>AG</math> intersects circle <math>N</math> at points <math>E</math> and <math>F</math>, then chord <math>EF</math> has length |
Revision as of 21:53, 16 June 2021
Problem 14
In the adjoining figure, points and lie on line segment , and , and are diameters of circle , and , respectively. Circles , and all have radius and the line is tangent to circle at . If intersects circle at points and , then chord has length
Solution:
Since is 15, is 75, and , .
Now drop a perpendicular from to at point . , and since is similar to . . so by the Pythagorean Theorem, . Thus Answer is then