Difference between revisions of "2007 AMC 10B Problems/Problem 14"

(Solution)
(Solution)
Line 9: Line 9:
 
==Solution==
 
==Solution==
  
If we let <math>p</math> be the number of people initially in the group, then <math>0.4p</math> is the number of girls. If two girls leave and two boys arrive, the number of people in the group is still <math>p,</math> but the number of girls is <math>0.4p-2</math>. Since only <math>30\%</math> of the group are girls,
+
If we let <math>p</math> be the number of people initially in the group, then <math>0.4p</math> is the number of girls. If two girls leave and two boys arrive, the number of people in the group is still <math>p</math>, but the number of girls is <math>0.4p-2</math>. Since only <math>30\%</math> of the group are girls,
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
 
\frac{0.4p-2}{p}&=\frac{3}{10}\\
 
\frac{0.4p-2}{p}&=\frac{3}{10}\\

Revision as of 12:35, 4 June 2021

The following problem is from both the 2007 AMC 12B #10 and 2007 AMC 10B #14, so both problems redirect to this page.

Problem

Some boys and girls are having a car wash to raise money for a class trip to China. Initially $40\%$ of the group are girls. Shortly thereafter two girls leave and two boys arrive, and then $30\%$ of the group are girls. How many girls were initially in the group?

$\textbf{(A) } 4 \qquad\textbf{(B) } 6 \qquad\textbf{(C) } 8 \qquad\textbf{(D) } 10 \qquad\textbf{(E) } 12$

Solution

If we let $p$ be the number of people initially in the group, then $0.4p$ is the number of girls. If two girls leave and two boys arrive, the number of people in the group is still $p$, but the number of girls is $0.4p-2$. Since only $30\%$ of the group are girls, \begin{align*} \frac{0.4p-2}{p}&=\frac{3}{10}\\ 4p-20&=3p\\ p&=20\end{align*} The number of girls is $0.4p=0.4(20)=\boxed{\mathrm{(C) \ } 8}$

Alternate Solution

There are the same number of total people before and after, but the number of girls has dropped by two and $10\%$. $\frac{2}{0.1}=20$, and $40\%\cdot20=8$, so the answer is $\mathrm{(C)}$.

See Also

2007 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2007 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png