Difference between revisions of "1967 AHSME Problems/Problem 32"
Line 14: | Line 14: | ||
<asy> | <asy> | ||
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ | /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ | ||
− | import graph; size( | + | import graph; size(5cm); |
real labelscalefactor = 0.5; /* changes label-to-point distance */ | real labelscalefactor = 0.5; /* changes label-to-point distance */ | ||
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ | pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ | ||
Line 34: | Line 34: | ||
label("$A$", (-0.92,4.2), NE * labelscalefactor); | label("$A$", (-0.92,4.2), NE * labelscalefactor); | ||
dot((-4.08,3.78),dotstyle); | dot((-4.08,3.78),dotstyle); | ||
− | label("$B$", (-4, | + | label("$B$", (-4.42,4), NE * labelscalefactor); |
dot((-3.1,-3.42),dotstyle); | dot((-3.1,-3.42),dotstyle); | ||
− | label("$C$", (-3. | + | label("$C$", (-3.4,-3.94), NE * labelscalefactor); |
dot((1.56,-0.22),dotstyle); | dot((1.56,-0.22),dotstyle); | ||
− | label("$D$", (1. | + | label("$D$", (1.8,-0.4), NE * labelscalefactor); |
dot((-1.566733533935139,1.9975415134291763),linewidth(4pt) + dotstyle); | dot((-1.566733533935139,1.9975415134291763),linewidth(4pt) + dotstyle); | ||
label("$O$", (-1.34,1.98), NE * labelscalefactor); | label("$O$", (-1.34,1.98), NE * labelscalefactor); | ||
Line 46: | Line 46: | ||
Since <math>AO \cdot OC = BO \cdot OD</math>, <math>ABCD</math> is cyclic through power of a point. From the given information, we see that <math>\triangle{AOB}\sim \triangle{DOC}</math> and <math>\triangle{BOC} \sim \triangle{AOD}</math>. Hence, we can find <math>CD=\frac{9}{2}</math> and <math>AD=2 \cdot BC</math>. Letting <math>BC</math> be <math>x</math>, we can use Ptolemy's to get | Since <math>AO \cdot OC = BO \cdot OD</math>, <math>ABCD</math> is cyclic through power of a point. From the given information, we see that <math>\triangle{AOB}\sim \triangle{DOC}</math> and <math>\triangle{BOC} \sim \triangle{AOD}</math>. Hence, we can find <math>CD=\frac{9}{2}</math> and <math>AD=2 \cdot BC</math>. Letting <math>BC</math> be <math>x</math>, we can use Ptolemy's to get | ||
<cmath>6 \cdot \frac{9}{2} + 2x^2=10 \cdot 11 \implies x=\sqrt{\frac{83}{2}}</cmath> | <cmath>6 \cdot \frac{9}{2} + 2x^2=10 \cdot 11 \implies x=\sqrt{\frac{83}{2}}</cmath> | ||
− | Since we are solving for <math>AD=2x=2\cdot\sqrt{\frac{83}{2}}=\sqrt{4\cdot\frac{83}{2}} = \boxed{\textbf{(E)}~\sqrt{166}}</math> | + | Since we are solving for <math>AD=2x=2\cdot\sqrt{\frac{83}{2}}=\sqrt{4\cdot\frac{83}{2}} = \boxed{\textbf{(E)}~\sqrt{166}}</math>// |
- PhunsukhWangdu | - PhunsukhWangdu | ||
Revision as of 21:11, 29 May 2021
Contents
Problem
In quadrilateral with diagonals and , intersecting at , , , , , and . The length of is:
Solution 1
After drawing the diagram, we see that we actually have a lot of lengths to work with. Considering triangle ABD, we know values of , but we want to find the value of AD. We can apply stewart's theorem now, letting , and we have , and we see that ,
Solution 2
Since , is cyclic through power of a point. From the given information, we see that and . Hence, we can find and . Letting be , we can use Ptolemy's to get Since we are solving for // - PhunsukhWangdu
See also
1967 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 31 |
Followed by Problem 33 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.