Difference between revisions of "2001 IMO Problems"
(→Problem 6) |
(→Problem 6) |
||
Line 21: | Line 21: | ||
==Problem 6== | ==Problem 6== | ||
− | <math>k > l > m > n</math> are positive integers such that <math>km + ln = (k+l-m | + | <math>k > l > m > n</math> are positive integers such that <math>km + ln = (k+l-m+n)(-k+l+m+n)</math>. Prove that <math>kl+mn</math> is not prime. |
==See Also== | ==See Also== |
Revision as of 20:52, 15 April 2021
Problem 1
Consider an acute triangle . Let
be the foot of the altitude of triangle
issuing from the vertex
, and let
be the circumcenter of triangle
. Assume that
. Prove that
.
Problem 2
Let be positive real numbers. Prove that
.
Problem 3
Twenty-one girls and twenty-one boys took part in a mathematical competition. It turned out that each contestant solved at most six problems, and for each pair of a girl and a boy, there was at least one problem that was solved by both the girl and the boy. Show that there is a problem that was solved by at least three girls and at least three boys.
Problem 4
Let be integers where
is odd. Let
denote a permutation of the integers
. Let
. Show that for some distinct permutations
,
the difference
is a multiple of
.
Problem 5
is a triangle.
lies on
and
bisects angle
.
lies on
and
bisects angle
. Angle
is
.
. Find all possible values for angle
.
Problem 6
are positive integers such that
. Prove that
is not prime.