Difference between revisions of "2021 USAJMO Problems/Problem 1"

(stop the joke problems)
(Tag: Replaced)
(Problem: Add problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
 
+
Let <math>\mathbb{N}</math> denote the set of positive integers. Find all functions <math>f : \mathbb{N} \rightarrow \mathbb{N}</math> such that for positive integers <math>a</math> and <math>b,</math><cmath>f(a^2 + b^2) = f(a)f(b) \text{ and } f(a^2) = f(a)^2.</cmath>
 
 
  
 
==Solution==
 
==Solution==

Revision as of 13:32, 15 April 2021

Problem

Let $\mathbb{N}$ denote the set of positive integers. Find all functions $f : \mathbb{N} \rightarrow \mathbb{N}$ such that for positive integers $a$ and $b,$\[f(a^2 + b^2) = f(a)f(b) \text{ and } f(a^2) = f(a)^2.\]

Solution