Difference between revisions of "2020 AIME II Problems/Problem 15"
(→Solution 2 (Official MAA)) |
(→Solution 3 (No parallelogram Law)) |
||
Line 53: | Line 53: | ||
==Solution 3 (No parallelogram Law)== | ==Solution 3 (No parallelogram Law)== | ||
Let <math>H</math> be the orthocenter of <math>\triangle AXY</math>. | Let <math>H</math> be the orthocenter of <math>\triangle AXY</math>. | ||
− | < | + | <b>Lemma 1:</b> <math>H</math> is the midpoint of <math>AC</math>. |
− | Proof: Let <math>H'</math> be the midpoint of <math>AC</math>, and observe that <math>XBH'T</math> and <math>TH'CY</math> are cyclical. Define <math>H'Y \cap BA=E</math> and <math>H'X \cap AC=F</math>, then note that: | + | <b>Proof:</b> Let <math>H'</math> be the midpoint of <math>AC</math>, and observe that <math>XBH'T</math> and <math>TH'CY</math> are cyclical. Define <math>H'Y \cap BA=E</math> and <math>H'X \cap AC=F</math>, then note that: |
<cmath>\angle H'BT=\angle H'CT=\angle H'XT=\angle H'YT=\angle A.</cmath> | <cmath>\angle H'BT=\angle H'CT=\angle H'XT=\angle H'YT=\angle A.</cmath> | ||
That implies that <math>\angle H'XB=\angle H'YC=90^\circ-\angle A</math>, <math>\angle CH'Y=\angle EH'B=90^\circ-\angle B</math>, and <math>\angle BH'Y=\angle FH'C=90^\circ-\angle C</math>. Thus <math>YH'\perp AX</math> and <math>XH' \perp AY</math>; <math>H'</math> is indeed the same as <math>H</math>, and we have proved lemma 1. | That implies that <math>\angle H'XB=\angle H'YC=90^\circ-\angle A</math>, <math>\angle CH'Y=\angle EH'B=90^\circ-\angle B</math>, and <math>\angle BH'Y=\angle FH'C=90^\circ-\angle C</math>. Thus <math>YH'\perp AX</math> and <math>XH' \perp AY</math>; <math>H'</math> is indeed the same as <math>H</math>, and we have proved lemma 1. |
Revision as of 11:31, 15 April 2021
Contents
Problem
Let be an acute scalene triangle with circumcircle . The tangents to at and intersect at . Let and be the projections of onto lines and , respectively. Suppose , , and . Find .
Solution
Assume to be the center of triangle , cross at , link , . Let be the middle point of and be the middle point of , so we have . Since , we have . Notice that , so , and this gives us . Since is perpendicular to , and cocycle (respectively), so and . So , so , which yields So same we have . Apply Ptolemy theorem in we have , and use Pythagoras theorem we have . Same in and triangle we have and . Solve this for and and submit into the equation about , we can obtain the result .
(Notice that is a parallelogram, which is an important theorem in Olympiad, and there are some other ways of computation under this observation.)
-Fanyuchen20020715
Solution 2 (Official MAA)
Let denote the midpoint of . The critical claim is that is the orthocenter of , which has the circle with diameter as its circumcircle. To see this, note that because , the quadrilateral is cyclic, it follows that implying that . Similarly, . In particular, is a parallelogram. Hence, by the Parallelogram Law, But . Therefore
Solution 3 (No parallelogram Law)
Let be the orthocenter of . Lemma 1: is the midpoint of . Proof: Let be the midpoint of , and observe that and are cyclical. Define and , then note that: That implies that , , and . Thus and ; is indeed the same as , and we have proved lemma 1.
Since is cyclical, and this implies that is a paralelogram. By the Law of Cosines: We add all these equations to get: We now use the conditions of the problem: and . Note that , so by the Pythagorean Theorem, it follows that . We were also given that , into which we substitute to get Therefore, . ~ MathLuis
See Also
2020 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.