Difference between revisions of "2020 AIME II Problems/Problem 15"
(→Solution) |
(→Solution 2 (Official MAA)) |
||
Line 50: | Line 50: | ||
Hence, by the Parallelogram Law, | Hence, by the Parallelogram Law, | ||
<cmath> TM^2 + XY^2 = 2(TX^2 + TY^2) = 2(1143-XY^2).</cmath> But <math>TM^2 = TB^2 - BM^2 = 16^2 - 11^2 = 135</math>. Therefore <cmath>XY^2 = \frac13(2 \cdot 1143-135) = 717.</cmath> | <cmath> TM^2 + XY^2 = 2(TX^2 + TY^2) = 2(1143-XY^2).</cmath> But <math>TM^2 = TB^2 - BM^2 = 16^2 - 11^2 = 135</math>. Therefore <cmath>XY^2 = \frac13(2 \cdot 1143-135) = 717.</cmath> | ||
+ | |||
+ | ==Solution 3 (No parallelogram Law)== | ||
+ | Let <math>H</math> be the orthocenter of <math>\triangle AXY</math>. | ||
+ | <color=#ff0>Lemma 1: <math>H</math> is the midpoint of <math>AC</math>.</color> | ||
+ | Proof: Let <math>H'</math> be the midpoint of <math>AC</math>, and observe that <math>XBH'T</math> and <math>TH'CY</math> are cyclical. Define <math>H'Y \cap BA=E</math> and <math>H'X \cap AC=F</math>, then note that: | ||
+ | <cmath>\angle H'BT=\angle H'CT=\angle H'XT=\angle H'YT=\angle A.</cmath> | ||
+ | That implies that <math>\angle H'XB=\angle H'YC=90^\circ-\angle A</math>, <math>\angle CH'Y=\angle EH'B=90^\circ-\angle B</math>, and <math>\angle BH'Y=\angle FH'C=90^\circ-\angle C</math>. Thus <math>YH'\perp AX</math> and <math>XH' \perp AY</math>; <math>H'</math> is indeed the same as <math>H</math>, and we have proved lemma 1. | ||
+ | |||
+ | Since <math>AXTY</math> is cyclical, <math>\angle XTY=\angle XHY</math> and this implies that <math>XHYT</math> is a paralelogram. | ||
+ | By the Law of Cosines: | ||
+ | <cmath>XY^2=XT^2+TY^2+2(XT)(TY)\cdot cos(\angle A)</cmath> | ||
+ | <cmath>XY^2=XH^2+HY^2+2(XH)(HY) \cdot cos(\angle A)</cmath> | ||
+ | <cmath>HT^2=HX^2+XT^2-2(HX)(XT) \cdot cos(\angle A)</cmath> | ||
+ | <cmath>HT^2=HY^2+YT^2-2(HY)(YT) \cdot cos(\angle A).</cmath> | ||
+ | We add all these equations to get: | ||
+ | <cmath>HT^2+XY^2=2(HT^2+TY^2).</cmath> | ||
+ | We now use the conditions of the problem: <math>BH=HC=11</math> and <math>BT=TC=16</math>. Note that <math>HT \perp BC</math>, so by the Pythagorean Theorem, it follows that <math>HT^2=135</math>. We were also given that <math>XT^2+TY^2=1143-XY^2</math>, into which we substitute to get | ||
+ | <cmath>135+XY^2=2286-2 \cdot XY^2 \implies 3 \cdot XY^2=2151.</cmath> | ||
+ | Therefore, <math>XY^2=\boxed{717}</math>. ~ MathLuis | ||
==See Also== | ==See Also== |
Revision as of 11:31, 15 April 2021
Contents
Problem
Let be an acute scalene triangle with circumcircle
. The tangents to
at
and
intersect at
. Let
and
be the projections of
onto lines
and
, respectively. Suppose
,
, and
. Find
.
Solution
Assume to be the center of triangle
,
cross
at
, link
,
. Let
be the middle point of
and
be the middle point of
, so we have
. Since
, we have
. Notice that
, so
, and this gives us
. Since
is perpendicular to
,
and
cocycle (respectively), so
and
. So
, so
, which yields
So same we have
. Apply Ptolemy theorem in
we have
, and use Pythagoras theorem we have
. Same in
and triangle
we have
and
. Solve this for
and
and submit into the equation about
, we can obtain the result
.
(Notice that is a parallelogram, which is an important theorem in Olympiad, and there are some other ways of computation under this observation.)
-Fanyuchen20020715
Solution 2 (Official MAA)
Let denote the midpoint of
. The critical claim is that
is the orthocenter of
, which has the circle with diameter
as its circumcircle. To see this, note that because
, the quadrilateral
is cyclic, it follows that
implying that
. Similarly,
. In particular,
is a parallelogram.
Hence, by the Parallelogram Law,
But
. Therefore
Solution 3 (No parallelogram Law)
Let be the orthocenter of
.
<color=#ff0>Lemma 1:
is the midpoint of
.</color>
Proof: Let
be the midpoint of
, and observe that
and
are cyclical. Define
and
, then note that:
That implies that
,
, and
. Thus
and
;
is indeed the same as
, and we have proved lemma 1.
Since is cyclical,
and this implies that
is a paralelogram.
By the Law of Cosines:
We add all these equations to get:
We now use the conditions of the problem:
and
. Note that
, so by the Pythagorean Theorem, it follows that
. We were also given that
, into which we substitute to get
Therefore,
. ~ MathLuis
See Also
2020 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.