Difference between revisions of "Euc20198/Sub-Problem 2"

(Problem)
(Problem)
 
Line 2: Line 2:
  
 
Given 0<x<<math>(\pi)</math>/2, cos(3/2cos(x)) = sin(3/2sin(x)), determine sin(2x), represented in the form (a(<math>\pi</math>)^2 + b(<math>\pi</math>) + c)/d where a,b,c,d are integers
 
Given 0<x<<math>(\pi)</math>/2, cos(3/2cos(x)) = sin(3/2sin(x)), determine sin(2x), represented in the form (a(<math>\pi</math>)^2 + b(<math>\pi</math>) + c)/d where a,b,c,d are integers
 +
 +
== Solution ==
 +
 +
== Video Solution ==
 +
https://www.youtube.com/watch?v=3ImnLWRcjYQ
 +
 +
~NAMCG

Latest revision as of 22:03, 22 March 2021

Problem

Given 0<x<$(\pi)$/2, cos(3/2cos(x)) = sin(3/2sin(x)), determine sin(2x), represented in the form (a($\pi$)^2 + b($\pi$) + c)/d where a,b,c,d are integers

Solution

Video Solution

https://www.youtube.com/watch?v=3ImnLWRcjYQ

~NAMCG