Difference between revisions of "2007 Cyprus MO/Lyceum/Problem 12"

 
m (+)
Line 1: Line 1:
 
==Problem==
 
==Problem==
The function <math>f : \Re \rightarrow \Re</math> has the properties <math>f(0) = -1</math> and <math>f(xy)+f(x)+f(y)=x+y+xy+k \forall x,y \in \Re</math>, where <math>k \in \Re</math> is a constant. The value of <math>f(-1)</math> is
+
The function <math>f : \Re \rightarrow \Re</math> has the properties <math>f(0) = -1</math> and <math>f(xy)+f(x)+f(y)=x+y+xy+k\ \ \ \forall x,y \in \Re</math>, where <math>k \in \Re</math> is a constant. The value of <math>\displaystyle f(-1)</math> is
  
 
<math> \mathrm{(A) \ } 1\qquad \mathrm{(B) \ } -1\qquad \mathrm{(C) \ } 0\qquad \mathrm{(D) \ } -2\qquad \mathrm{(E) \ } 3</math>
 
<math> \mathrm{(A) \ } 1\qquad \mathrm{(B) \ } -1\qquad \mathrm{(C) \ } 0\qquad \mathrm{(D) \ } -2\qquad \mathrm{(E) \ } 3</math>
Line 7: Line 7:
 
First, to determine the value of <math>k</math>, let <math>x=y=0</math>.
 
First, to determine the value of <math>k</math>, let <math>x=y=0</math>.
  
<math>f(0\cdot0)+f(0)+f(0)=0+0+0\cdot0+k</math>
+
<math>f(0\cdot0)+f(0)+f(0)=0+0+0\cdot0+k</math>, so <math>\displaystyle k = (-1)+(-1)+(-1) = - 3</math>.
  
<math>(-1)+(-1)+(-1)=k</math>
+
Now, to determine the value of <math>\displaystyle f(-1)</math>, let <math>x=-1</math> and <math>y=0</math>.
  
<math>k=-3</math>
+
<math>\displaystyle f(-1\cdot0)+f(-1)+f(0)=-1+0+0\cdot0-3</math>
  
Now, to determine the value of <math>f(-1)</math>, let <math>x=-1</math> and <math>y=0</math>.
+
<math>\displaystyle (-1)+f(-1)+(-1)=-4</math>
  
<math>f(-1\cdot0)+f(-1)+f(0)=-1+0+0\cdot0-3</math>
+
<math>\displaystyle f(-1)=-2\Rightarrow\mathrm{ D}</math>
 
 
<math>(-1)+f(-1)+(-1)=-4</math>
 
 
 
<math>f(-1)=-2\Rightarrow\mathrm{ D}</math>
 
  
 
==See also==
 
==See also==
*[[2007 Cyprus MO/Lyceum/Problems]]
+
{{CYMO box|year=2007|l=Lyceum|num-b=11|num-a=13}}
 
 
*[[2007 Cyprus MO/Lyceum/Problem 11|Previous Problem]]
 
  
*[[2007 Cyprus MO/Lyceum/Problem 13|Next Problem]]
+
[[Category:Introductory Algebra Problems]]

Revision as of 16:02, 6 May 2007

Problem

The function $f : \Re \rightarrow \Re$ has the properties $f(0) = -1$ and $f(xy)+f(x)+f(y)=x+y+xy+k\ \ \ \forall x,y \in \Re$, where $k \in \Re$ is a constant. The value of $\displaystyle f(-1)$ is

$\mathrm{(A) \ } 1\qquad \mathrm{(B) \ } -1\qquad \mathrm{(C) \ } 0\qquad \mathrm{(D) \ } -2\qquad \mathrm{(E) \ } 3$

Solution

First, to determine the value of $k$, let $x=y=0$.

$f(0\cdot0)+f(0)+f(0)=0+0+0\cdot0+k$, so $\displaystyle k = (-1)+(-1)+(-1) = - 3$.

Now, to determine the value of $\displaystyle f(-1)$, let $x=-1$ and $y=0$.

$\displaystyle f(-1\cdot0)+f(-1)+f(0)=-1+0+0\cdot0-3$

$\displaystyle (-1)+f(-1)+(-1)=-4$

$\displaystyle f(-1)=-2\Rightarrow\mathrm{ D}$

See also

2007 Cyprus MO, Lyceum (Problems)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30