Difference between revisions of "2021 AIME I Problems/Problem 7"
(→Solution 2) |
(→Solution 2) |
||
Line 48: | Line 48: | ||
<math>\{3, 7, 11, \cdots, 27\}</math>. | <math>\{3, 7, 11, \cdots, 27\}</math>. | ||
− | Now all we have to do is multiply by <math>2^p</math> to get back to <math>m</math> and <math>n</math>. Let’s organize the solutions in | + | Now all we have to do is multiply by <math>2^p</math> to get back to <math>m</math> and <math>n</math>. Let’s organize the solutions in order of increasing values of <math>p</math>, keeping in mind that <math>m</math> and <math>n</math> are bounded between 1 and 30. |
+ | |||
+ | For <math>p = 0</math> we get <math>\{1, 5, 9, \cdots, 29\}, \{3, 7, 11, \cdots, 27\}</math>. | ||
+ | |||
+ | For <math>p = 1</math> we get <math>\{2, 10, 18, 26\}, \{6, 14, 22, 30\}</math> | ||
+ | |||
+ | For <math>p = 2</math> we get <math>\{4, 20\}, \{12, 28\}</math> | ||
+ | |||
+ | If we increase the value of <math>p</math> more, there will be less than two integers in our sets, so we are done there. | ||
+ | There are 8 numbers in the first set, 7 in the second, 4 in the third, 4 in the fourth, 2 in the fifth, and 2 in the sixth. | ||
+ | In each of these sets we can choose 2 numbers to be <math>m</math> and <math>n</math> and then assign them in increasing order. Thus there are: | ||
+ | |||
+ | <cmath>\dbinom{8}{2}+\dbinom{7}{2}+\dbinom{4}{2}+\dbinom{4}{2}+\dbinom{2}{2}+\dbinom{2}{2}</cmath> | ||
+ | |||
+ | <cmath> = 28+21+6+6+1+1 = \box63</cmath> | ||
Revision as of 04:53, 13 March 2021
Contents
Problem
Find the number of pairs of positive integers with such that there exists a real number satisfying
Solution 1
The maximum value of is , which is achieved at for some integer . This is left as an exercise to the reader.
This implies that , and that and , for integers .
Taking their ratio, we have It remains to find all that satisfy this equation.
If , then . This corresponds to choosing two elements from the set . There are ways to do so.
If , by multiplying and by the same constant , we have that . Then either , or . But the first case was already counted, so we don't need to consider that case. The other case corresponds to choosing two numbers from the set . There are ways here.
Finally, if , note that must be an integer. This means that belong to the set , or . Taking casework on , we get the sets . Some sets have been omitted; this is because they were counted in the other cases already. This sums to .
In total, there are pairs of .
This solution was brought to you by ~Leonard_my_dude~
Solution 2
In order for , .
This happens when mod
This means that and for any integers and .
As in Solution 1, take the ratio of the two equations:
Now notice that the numerator and denominator of are both odd, which means that and have the same power of two (the powers of 2 cancel out).
Let the common power be : then , and where and are integers between 1 and 30.
We can now rewrite the equation:
Now it is easy to tell that mod and mod . However, there is another case: that
mod and mod . This is because multiplying both and by will not change the fraction, but each congruence will be changed to mod mod .
From the first set of congruences, we find that and can be two of .
From the second set of congruences, we find that and can be two of .
Now all we have to do is multiply by to get back to and . Let’s organize the solutions in order of increasing values of , keeping in mind that and are bounded between 1 and 30.
For we get .
For we get
For we get
If we increase the value of more, there will be less than two integers in our sets, so we are done there.
There are 8 numbers in the first set, 7 in the second, 4 in the third, 4 in the fourth, 2 in the fifth, and 2 in the sixth. In each of these sets we can choose 2 numbers to be and and then assign them in increasing order. Thus there are:
\begin{align*} &p & \text{Possible Solutions For } \\ &0 & \\ &1 & \\ &2 & \\ \end{align*}
I WILL FINISH THE SOLUTION SOON, PLEASE DO NOT EDIT THIS BEFORE THEN, THANK YOU!
-KingRavi
See also
2021 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.