Difference between revisions of "2021 AIME I Problems/Problem 4"

Line 7: Line 7:
 
==See also==
 
==See also==
 
{{AIME box|year=2021|n=I|num-b=3|num-a=5}}
 
{{AIME box|year=2021|n=I|num-b=3|num-a=5}}
 +
 +
[[Category:Intermediate Combinatorics Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 15:58, 11 March 2021

Problem

Find the number of ways $66$ identical coins can be separated into three nonempty piles so that there are fewer coins in the first pile than in the second pile and fewer coins in the second pile than in the third pile.

Solution

Suppose we have $1$ coin in the first pile. Then $(1, 2, 63), (1, 3, 62), \ldots, (1, 32, 33)$ all work for a total of $31$ piles. Suppose we have $2$ coins in the first pile, then $(2, 3, 61), (2, 4, 60), \ldots, (2, 31, 33)$ all work, for a total of $29$. Continuing this pattern until $21$ coins in the first pile, we have the sum $31+29+28+26+25+\ldots+4+2+1=(31+28+25+22+\ldots+1)+(29+26+23+\ldots+2)=176+155=\boxed{331}$.

See also

2021 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png