Difference between revisions of "2021 AMC 12A Problems/Problem 21"

m (Solution 2 (Three Variables, Three Equations))
m (Problem: Pursued exact wording as the "Problems" page.)
Line 1: Line 1:
 
==Problem==
 
==Problem==
The five solutions to the equation <cmath>(z-1)(z^{2}+2z+4)(z^{2}+4z+6)=0</cmath> may be written in the form <math>x_{k}+y_{k}i</math> for <math>1\leq k\leq 5</math>, where <math>x_{k}</math> and <math>y_{k}</math> are real. Let <math>\mathbb{E}</math> be the unique ellipse that passes through the points <math>(x_{1}, y_{1}), (x_{2}, y_{2}), (x_{3}, y_{3}), (x_{4}, y_{4}),</math> and <math>(x_{5}, y_{5})</math>. The excentricity of <math>\mathbb{E}</math> can be written in the form <math>\frac{m}{\sqrt{n}}</math> where <math>m</math> and <math>n</math> are positive integers and <math>n</math> is not divisible by the square of any prime. What is <math>m+n</math>?
+
The five solutions to the equation<cmath>(z-1)(z^2+2z+4)(z^2+4z+6)=0</cmath> may be written in the form <math>x_k+y_ki</math> for <math>1\le k\le 5,</math> where <math>x_k</math> and <math>y_k</math> are real. Let <math>\mathcal E</math> be the unique ellipse that passes through the points <math>(x_1,y_1),(x_2,y_2),(x_3,y_3),(x_4,y_4),</math> and <math>(x_5,y_5)</math>. The eccentricity of <math>\mathcal E</math> can be written in the form <math>\sqrt{\frac mn}</math> where <math>m</math> and <math>n</math> are relatively prime positive integers. What is <math>m+n</math>? (Recall that the eccentricity of an ellipse <math>\mathcal E</math> is the ratio <math>\frac ca</math>, where <math>2a</math> is the length of the major axis of <math>\mathcal E</math> and <math>2c</math> is the is the distance between its two foci.)
  
 
<math>\textbf{(A) } 7\qquad\textbf{(B) } 9\qquad\textbf{(C) } 11\qquad\textbf{(D) } 13\qquad\textbf{(E) } 15\qquad</math>
 
<math>\textbf{(A) } 7\qquad\textbf{(B) } 9\qquad\textbf{(C) } 11\qquad\textbf{(D) } 13\qquad\textbf{(E) } 15\qquad</math>

Revision as of 12:13, 7 March 2021

Problem

The five solutions to the equation\[(z-1)(z^2+2z+4)(z^2+4z+6)=0\] may be written in the form $x_k+y_ki$ for $1\le k\le 5,$ where $x_k$ and $y_k$ are real. Let $\mathcal E$ be the unique ellipse that passes through the points $(x_1,y_1),(x_2,y_2),(x_3,y_3),(x_4,y_4),$ and $(x_5,y_5)$. The eccentricity of $\mathcal E$ can be written in the form $\sqrt{\frac mn}$ where $m$ and $n$ are relatively prime positive integers. What is $m+n$? (Recall that the eccentricity of an ellipse $\mathcal E$ is the ratio $\frac ca$, where $2a$ is the length of the major axis of $\mathcal E$ and $2c$ is the is the distance between its two foci.)

$\textbf{(A) } 7\qquad\textbf{(B) } 9\qquad\textbf{(C) } 11\qquad\textbf{(D) } 13\qquad\textbf{(E) } 15\qquad$

Solution 1

The solutions to this equation are $z = 1$, $z = -1 \pm i\sqrt 3$, and $z = -2\pm i\sqrt 2$. Consider the five points $(1,0)$, $(-1,\pm\sqrt 3)$, and $(-2,\pm\sqrt 2)$; these are the five points which lie on $\mathcal E$. Note that since these five points are symmetric about the $x$-axis, so must $\mathcal E$.

Now let $r:= b/a$ denote the ratio of the length of the minor axis of $\mathcal E$ to the length of its major axis. Remark that if we perform a transformation of the plane which scales every $x$-coordinate by a factor of $r$, $\mathcal E$ is sent to a circle $\mathcal E'$. Thus, the problem is equivalent to finding the value of $r$ such that $(r,0)$, $(-r,\pm\sqrt 3)$, and $(-2r,\pm\sqrt 2)$ all lie on a common circle; equivalently, it suffices to determine the value of $r$ such that the circumcenter of the triangle formed by the points $P_1 = (r,0)$, $P_2 = (-r,\sqrt 3)$, and $P_3 = (-2r,\sqrt 2)$ lies on the $x$-axis.

Recall that the circumcenter of a triangle $ABC$ is the intersection point of the perpendicular bisectors of its three sides. The equations of the perpendicular bisectors of the segments $\overline{P_1P_2}$ and $\overline{P_1P_3}$ are\[y = \tfrac{\sqrt 3}2 + \tfrac{2r}{\sqrt 3}x\qquad\text{and}\qquad y = \tfrac{\sqrt 2}2 + \tfrac{3r}{\sqrt 2}(x + \tfrac r2)\]respectively. These two lines have different slopes for $r\neq 0$, so indeed they will intersect at some point $(x_0,y_0)$; we want $y_0 = 0$. Plugging $y = 0$ into the first equation yields $x = -\tfrac{3}{4r}$, and so plugging $y=0$ into the second equation and simplifying yields\[-\tfrac{1}{3r} = x + \tfrac r2 = -\tfrac{3}{4r} + \tfrac{r}{2}.\]Solving yields $r=\sqrt{\tfrac 56}$.

Finally, recall that the lengths $a$, $b$, and $c$ (where $c$ is the distance between the foci of $\mathcal E$) satisfy $c = \sqrt{a^2 - b^2}$. Thus the eccentricity of $\mathcal E$ is $\tfrac ca = \sqrt{1 - (\tfrac ba)^2} = \sqrt{\tfrac 16}$ and the requested answer is $\boxed{7\textbf{ (A)}}$.

Solution 2 (Three Variables, Three Equations)

Completing the square in the original equation, we get \[(z-1)\left((z+1)^2+3\right)\left((z+2)^2+2\right)=0,\] from which $z=1,-1\pm\sqrt{3}i,-2\pm\sqrt{2}i.$ Now, we will find the equation of an ellipse $\mathbb{E}$ that passes through $(1,0),(-1,\pm\sqrt3),$ and $(-2,\pm\sqrt2)$ in the $xy$-plane. By symmetry, the center of $\mathbb{E}$ must be on the $x$-axis.

The formula of $\mathbb{E}$ is \[\frac{(x-h)^2}{a^2}+\frac{y^2}{b^2}=1,\] with the center at $(h,0)$ and the axes' lengths $2a$ and $2b.$ Plugging the points $(1,0),(-1,\sqrt3),$ and $(-2,\sqrt2)$ in, respectively, we get the following system of three equations: \begin{align*} \frac{(1-h)^2}{a^2}&=1, \\ \frac{(-1-h)^2}{a^2}+\frac{{\sqrt3}^2}{b^2}&=1, \\ \frac{(-2-h)^2}{a^2}+\frac{{\sqrt2}^2}{b^2}&=1. \end{align*} Clearing fractions gives \begin{align*} (1-h)^2&=a^2, \\ b^2(-1-h)^2 + 3a^2 &= a^2b^2, \\ b^2(-2-h)^2 + 2a^2 &= a^2b^2. \end{align*} Since $t^2=(-t)^2$ for all real numbers $t,$ we rewrite the system as \begin{align*} (1-h)^2&=a^2, \ \ \ \ \ \ \ \ \ \ \ \ &\text{(1)}\\ b^2(1+h)^2 + 3a^2 &= a^2b^2, &\text{(2)}\\ b^2(2+h)^2 + 2a^2 &= a^2b^2. &\text{(3)} \end{align*} Applying the Transitive Property in $\text{(2)}$ and $\text{(3)},$ we get \begin{align*} b^2(1+h)^2 + 3a^2 &= b^2(2+h)^2 + 2a^2 \\ a^2 &= b^2\left((2+h)^2-(1+h)^2\right) \\ a^2 &= b^2(2h+3). \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{(4)} \end{align*} Applying the results of $\text{(1)}$ and $\text{(4)}$ on $\text{(2)},$ we get \begin{align*} b^2(1+h)^2 + 3\underbrace{b^2(2h+3)}_\text{by (4)} &= \underbrace{(1-h)^2}_\text{by (1)}b^2 \\ (1+h)^2+3(2h+3)&=(1-h)^2 \\ 1+2h+h^2+6h+9&=1-2h+h^2 \\ 10h&=-9 \\ h&=-\frac{9}{10}. \end{align*} Substituting this into $\text{(1)},$ we get $a^2=\frac{361}{100}.$

Substituting the current results into $\text{(4)},$ we get $b^2=\frac{361}{120}.$

Finally, we have \[c^2 = a^2-b^2 = 361\left(\frac{1}{100}-\frac{1}{120}\right) = \frac{361}{600},\] and \[\frac{c}{a}=\sqrt{\frac{c^2}{a^2}}=\sqrt{\frac{361/600}{361/100}}=\sqrt{\frac 16}.\] Our answer is $1+6=\boxed{\textbf{(A) } 7}.$

Graph of $\mathbb{E}$ in Desmos: https://www.desmos.com/calculator/ptdpdzsgyo

~MRENTHUSIASM

Video Solution by OmegaLearn (Using Ellipse properties & Quadratic)

https://youtu.be/eIYFQSeIRzM

~ pi_is_3.14

See also

2021 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png