Difference between revisions of "2018 AIME I Problems/Problem 2"

(Solution 3 (Official MAA))
Line 18: Line 18:
  
 
==Solution 3 (Official MAA)==
 
==Solution 3 (Official MAA)==
The problem is equivalent to finding a solution to the system of Diophantine equations <math>196a+14b+c=225a+15c+b</math> and <math>225a+15c+b=216a+36c+6a+c,</math> where <math>1\le a\le 5,\,0\le b\le 13,</math> and <math>0\le c\le 5.</math> Simplifying the second equation gives <math>b=22c-3a.</math> a. Substituting for b in the first equation and simplifying then gives <math>a=4c,</math> so <math>a = 4</math> and <math>c = 1,</math> and the base-<math>10</math> representation of <math>n</math> is <math>222 \cdot� 4 + 37 \cdot� 1 = 925.</math> It may be verified that <math>b=10\le 13.</math>
+
The problem is equivalent to finding a solution to the system of Diophantine equations <math>196a+14b+c=225a+15c+b</math> and <math>225a+15c+b=216a+36c+6a+c,</math> where <math>1\le a\le 5,\,0\le b\le 13,</math> and <math>0\le c\le 5.</math> Simplifying the second equation gives <math>b=22c-3a.</math> a. Substituting for b in the first equation and simplifying then gives <math>a=4c,</math> so <math>a = 4</math> and <math>c = 1,</math> and the base-<math>10</math> representation of <math>n</math> is <math>222 \cdot 4 + 37 \cdot 1 = 925.</math> It may be verified that <math>b=10\le 13.</math>
 +
 
 
==Video Solution==
 
==Video Solution==
  

Revision as of 19:37, 26 February 2021

Problem

The number $n$ can be written in base $14$ as $\underline{a}\text{ }\underline{b}\text{ }\underline{c}$, can be written in base $15$ as $\underline{a}\text{ }\underline{c}\text{ }\underline{b}$, and can be written in base $6$ as $\underline{a}\text{ }\underline{c}\text{ }\underline{a}\text{ }\underline{c}\text{ }$, where $a > 0$. Find the base-$10$ representation of $n$.

Solution 1

We have these equations: $196a+14b+c=225a+15c+b=222a+37c$. Taking the last two we get $3a+b=22c$. Because $c \neq 0$ otherwise $a \ngtr 0$, and $a \leq 5$, $c=1$.

Then we know $3a+b=22$. Taking the first two equations we see that $29a+14c=13b$. Combining the two gives $a=4, b=10, c=1$. Then we see that $222 \times 4+37 \times1=\boxed{925}$.

Solution 2

We know that $196a+14b+c=225a+15c+b=222a+37c$. Combining the first and third equations give that $196a+14b+c=222a+37c$, or \[7b=13a+18c\] The second and third gives $222a+37c=225a+15c+b$, or \[22c-3a=b\]\[154c-21a=7b=13a+18c\]\[4c=a\] We can have $a=4,8,12$, but only $a=4$ falls within the possible digits of base $6$. Thus $a=4$, $c=1$, and thus you can find $b$ which equals $10$. Thus, our answer is $4\cdot225+1\cdot15+10=\boxed{925}$.

Solution 3 (Official MAA)

The problem is equivalent to finding a solution to the system of Diophantine equations $196a+14b+c=225a+15c+b$ and $225a+15c+b=216a+36c+6a+c,$ where $1\le a\le 5,\,0\le b\le 13,$ and $0\le c\le 5.$ Simplifying the second equation gives $b=22c-3a.$ a. Substituting for b in the first equation and simplifying then gives $a=4c,$ so $a = 4$ and $c = 1,$ and the base-$10$ representation of $n$ is $222 \cdot 4 + 37 \cdot 1 = 925.$ It may be verified that $b=10\le 13.$

Video Solution

https://www.youtube.com/watch?v=WVtbD8x9fCM ~Shreyas S

See Also

2018 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png