Difference between revisions of "2018 AIME II Problems/Problem 7"
Coltsfan10 (talk | contribs) m (→Solution 3) |
Coltsfan10 (talk | contribs) (→Solution 3) |
||
Line 14: | Line 14: | ||
==Solution 3== | ==Solution 3== | ||
− | Let <math>T_1</math> stand for <math>AP_1Q_1</math>, and <math>T_k = AP_kQ_k</math>. All triangles <math>T</math> are similar by AA. Let the area of <math>T_1</math> be <math>x</math>. The next trapezoid will also have an area of <math>x</math>, as given. Therefore, <math>T_k</math> has an area of <math>kx</math>. The ratio of the areas is equal to the square of the scale factor for any plane figure and its image. Therefore, <math>AP_k=AP_1\cdot \sqrt{k}</math>, and the same if <math>Q</math> is substituted for <math>P</math> throughout. We want the side <math>P_kQ_k</math> to be rational. Setting up proportions: <cmath>5\sqrt{3} : \sqrt{2450}=35\sqrt{2}</cmath> <cmath>\sqrt{6} : 14</cmath> which shows that <math> | + | Let <math>T_1</math> stand for <math>AP_1Q_1</math>, and <math>T_k = AP_kQ_k</math>. All triangles <math>T</math> are similar by AA. Let the area of <math>T_1</math> be <math>x</math>. The next trapezoid will also have an area of <math>x</math>, as given. Therefore, <math>T_k</math> has an area of <math>kx</math>. The ratio of the areas is equal to the square of the scale factor for any plane figure and its image. Therefore, <math>AP_k=AP_1\cdot \sqrt{k}</math>, and the same if <math>Q</math> is substituted for <math>P</math> throughout. We want the side <math>P_kQ_k</math> to be rational. Setting up proportions: <cmath>5\sqrt{3} : \sqrt{2450}=35\sqrt{2}</cmath> <cmath>\sqrt{6} : 14</cmath> which shows that <math>P_1Q_1=\frac{\sqrt{6}}{14}</math>. In order for <math>\sqrt{k}x</math> to be rational, <math>\sqrt{k}</math> must be some rational multiple of <math>\sqrt{6}</math>. This is achieved at <math>k=\sqrt{6}, 2\sqrt{6}, ... , 20\sqrt{6}</math>. We end there as <math>21\sqrt{6}=\sqrt{2646}</math>. There are 20 numbers from 1 to 20, so there are <math>\boxed{020}</math> solutions. |
Solution by a1b2 | Solution by a1b2 |
Revision as of 19:03, 23 February 2021
Problem 7
Triangle has side lengths
,
, and
. Points
are on segment
with
between
and
for
, and points
are on segment
with
between
and
for
. Furthermore, each segment
,
, is parallel to
. The segments cut the triangle into
regions, consisting of
trapezoids and
triangle. Each of the
regions has the same area. Find the number of segments
,
, that have rational length.
Solution 1
For each between
and
, the area of the trapezoid with
as its bottom base is the difference between the areas of two triangles, both similar to
. Let
be the length of segment
. The area of the trapezoid with bases
and
is
times the area of
. (This logic also applies to the topmost triangle if we notice that
.) However, we also know that the area of each shape is
times the area of
. We then have
. Simplifying,
. However, we know that
, so
, and in general,
and
. The smallest
that gives a rational
is
, so
is rational if and only if
for some integer
.The largest
such that
is less than
is
, so
has
possible values.
Solution by zeroman
Solution 2
We have that there are trapezoids and
triangle of equal area, with that one triangle being
. Notice, if we "stack" the trapezoids on top of
the way they already are, we'd create a similar triangle, all of which are similar to
, and since the trapezoids and
have equal area, each of these similar triangles,
have area
, and so
. We want the ratio of the side lengths
. Since area is a 2-dimensional unit of measurement, and side lengths are 1-dimensional, the ratio is simply the square root of the areas, or
, so there are
solutions.
Solution by ktong
Solution 3
Let stand for
, and
. All triangles
are similar by AA. Let the area of
be
. The next trapezoid will also have an area of
, as given. Therefore,
has an area of
. The ratio of the areas is equal to the square of the scale factor for any plane figure and its image. Therefore,
, and the same if
is substituted for
throughout. We want the side
to be rational. Setting up proportions:
which shows that
. In order for
to be rational,
must be some rational multiple of
. This is achieved at
. We end there as
. There are 20 numbers from 1 to 20, so there are
solutions.
Solution by a1b2
See Also
2018 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.