Difference between revisions of "2008 AMC 12B Problems/Problem 6"

m (Solution)
Line 7: Line 7:
 
==Solution==
 
==Solution==
  
Every time the pedometer flips, Pete has walked <math>100,000</math> steps. Therefore, Pete has walked a total of <math>100,000 * 44 + 50,000 = 4,450,000</math> steps, which is <math>4,450,000/1,800 = 2472.2</math> miles, which is closest to answer choice <math>\boxed{A}</math>.
+
Every time the pedometer flips, Pete has walked <math>100,000</math> steps. Therefore, Pete has walked a total of <math>100,000 * 44 + 50,000 = 4,450,000</math> steps, which is <math>4,450,000/1,800 = 2472.2</math> miles, which is the closest to the answer choice <math>\boxed{A}</math>.
  
 
==See Also==
 
==See Also==

Revision as of 13:17, 16 February 2021

Problem

Postman Pete has a pedometer to count his steps. The pedometer records up to $99999$ steps, then flips over to $00000$ on the next step. Pete plans to determine his mileage for a year. On January $1$ Pete sets the pedometer to $00000$. During the year, the pedometer flips from $99999$ to $00000$ forty-four times. On December $31$ the pedometer reads $50000$. Pete takes $1800$ steps per mile. Which of the following is closest to the number of miles Pete walked during the year?

$\textbf{(A)}\ 2500 \qquad \textbf{(B)}\ 3000 \qquad \textbf{(C)}\ 3500 \qquad \textbf{(D)}\ 4000 \qquad \textbf{(E)}\ 4500$

Solution

Every time the pedometer flips, Pete has walked $100,000$ steps. Therefore, Pete has walked a total of $100,000 * 44 + 50,000 = 4,450,000$ steps, which is $4,450,000/1,800 = 2472.2$ miles, which is the closest to the answer choice $\boxed{A}$.

See Also

2008 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png