Difference between revisions of "2021 AMC 12A Problems/Problem 24"

(Solution)
(Solution)
Line 13: Line 13:
 
Applying the Extended Law of Sines on <math>\triangle PQR,</math> we have <cmath>XP=\frac{QR}{2\cdot\sin \angle QPR}=\frac{3\sqrt3}{2\cdot\frac{\sqrt3}{2}}=3,</cmath> in which the radius of <math>\odot \Omega</math> is <math>3.</math>
 
Applying the Extended Law of Sines on <math>\triangle PQR,</math> we have <cmath>XP=\frac{QR}{2\cdot\sin \angle QPR}=\frac{3\sqrt3}{2\cdot\frac{\sqrt3}{2}}=3,</cmath> in which the radius of <math>\odot \Omega</math> is <math>3.</math>
  
By the SAS Congruence, we have <math>\triangle QXM\cong\triangle RXM,</math> both of which are <math>30^\circ</math>-<math>60^\circ</math>-<math>90^\circ</math> triangles. By the side-length ratios, <math>RM=\frac{3\sqrt3}{2}, RX=3,</math> and <math>MX=\frac{3}{2}.</math>
+
By the SAS Congruence, we have <math>\triangle QXM\cong\triangle RXM,</math> both of which are <math>30^\circ</math>-<math>60^\circ</math>-<math>90^\circ</math> triangles. By the side-length ratios, <math>RM=\frac{3\sqrt3}{2}, RX=3,</math> and <math>MX=\frac{3}{2}.</math> By the Pythagorean Theorem in <math>\triangle ORM,</math> we get <math>OM=\frac{13}{2}</math> and <math>OX=OM-XM=5.</math>
  
 
~MRENTHUSIASM
 
~MRENTHUSIASM

Revision as of 01:39, 14 February 2021

Problem

Semicircle $\Gamma$ has diameter $\overline{AB}$ of length $14$. Circle $\Omega$ lies tangent to $\overline{AB}$ at a point $P$ and intersects $\Gamma$ at points $Q$ and $R$. If $QR=3\sqrt3$ and $\angle QPR=60^\circ$, then the area of $\triangle PQR$ equals $\tfrac{a\sqrt{b}}{c}$, where $a$ and $c$ are relatively prime positive integers, and $b$ is a positive integer not divisible by the square of any prime. What is $a+b+c$?

$\textbf{(A) } 110\qquad\textbf{(B) } 114\qquad\textbf{(C) } 118\qquad\textbf{(D) } 122\qquad\textbf{(E) } 126\qquad$

Diagram

~MRENTHUSIASM (by Geometry Expressions)

Solution

Let $O=\Gamma$ be the center of the semicircle, $X=\Omega$ be the center of the circle, and $M$ be the midpoint of $\overline{QR}.$ By the Perpendicular Chord Theorem Converse, we have $\overline{XM}\perp\overline{QR}$ and $\overline{OM}\perp\overline{QR}.$ Together, points $O, X,$ and $M$ must be collinear.

Applying the Extended Law of Sines on $\triangle PQR,$ we have \[XP=\frac{QR}{2\cdot\sin \angle QPR}=\frac{3\sqrt3}{2\cdot\frac{\sqrt3}{2}}=3,\] in which the radius of $\odot \Omega$ is $3.$

By the SAS Congruence, we have $\triangle QXM\cong\triangle RXM,$ both of which are $30^\circ$-$60^\circ$-$90^\circ$ triangles. By the side-length ratios, $RM=\frac{3\sqrt3}{2}, RX=3,$ and $MX=\frac{3}{2}.$ By the Pythagorean Theorem in $\triangle ORM,$ we get $OM=\frac{13}{2}$ and $OX=OM-XM=5.$

~MRENTHUSIASM

Video Solution by Punxsutawney Phil

https://youtube.com/watch?v=cEHF5iWMe9c

Video Solution by OmegaLearn (Similar Triangles, Law of Sines, Law of Cosines )

https://youtu.be/j965v6ahUZk

See also

2021 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png