Difference between revisions of "1965 AHSME Problems/Problem 33"
(Created page with "==Solution== We can use Legendre's to find the number of <math>0</math>s in base <math>10</math> <cmath>\lfloor \frac{15}{5} \rfloor + \lfloor \frac{15}{25} \rfloor = 3</cmath...") |
m (Put a {} around 11) |
||
Line 6: | Line 6: | ||
<cmath>\lfloor \frac{15}{2} \rfloor + \lfloor \frac{15}{4} \rfloor + \lfloor \frac{15}{8} \rfloor = 7 + 3 + 1 = 11</cmath> | <cmath>\lfloor \frac{15}{2} \rfloor + \lfloor \frac{15}{4} \rfloor + \lfloor \frac{15}{8} \rfloor = 7 + 3 + 1 = 11</cmath> | ||
<cmath>\lfloor \frac{15}{3} \rfloor + \lfloor \frac{15}{9} \rfloor = 5 + 1 = 6</cmath> | <cmath>\lfloor \frac{15}{3} \rfloor + \lfloor \frac{15}{9} \rfloor = 5 + 1 = 6</cmath> | ||
− | Thus, <math>3^6 \vert 15!</math> and <math>2^11 \vert 15! \Rrightarrow (2^2)^5 \vert 15!</math> | + | Thus, <math>3^6 \vert 15!</math> and <math>2^{11} \vert 15! \Rrightarrow (2^2)^5 \vert 15!</math> |
So <math>k = 5</math>, and <math>5+3 = 8</math> <math>\boxed{D}</math> | So <math>k = 5</math>, and <math>5+3 = 8</math> <math>\boxed{D}</math> | ||
~JustinLee2017 | ~JustinLee2017 |
Revision as of 19:13, 13 February 2021
Solution
We can use Legendre's to find the number of s in base So . Likewise, we are looking for the number of s and s that divide , so we use Legendre's again. Thus, and So , and
~JustinLee2017