Difference between revisions of "2021 AMC 12A Problems/Problem 24"
Pi is 3.14 (talk | contribs) (→Video Solution by Punxsutawney Phil) |
Brendanb4321 (talk | contribs) m (→Problem) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | Semicircle <math>\Gamma</math> has diameter <math>\overline{AB}</math> of length <math>14</math>. Circle <math>\Omega</math> lies tangent to <math>\overline{AB}</math> and intersects <math>\Gamma</math> at points <math>Q</math> and <math>R</math>. If <math>QR=3\ | + | Semicircle <math>\Gamma</math> has diameter <math>\overline{AB}</math> of length <math>14</math>. Circle <math>\Omega</math> lies tangent to <math>\overline{AB}</math> at a point <math>P</math> and intersects <math>\Gamma</math> at points <math>Q</math> and <math>R</math>. If <math>QR=3\sqrt3</math> and <math>\angle QPR=60^\circ</math>, then the area of <math>\triangle PQR</math> equals <math>\tfrac{a\sqrt{b}}{c}</math>, where <math>a</math> and <math>c</math> are relatively prime positive integers, and <math>b</math> is a positive integer not divisible by the square of any prime. What is <math>a+b+c</math>? |
<math>\textbf{(A) } 110\qquad\textbf{(B) } 114\qquad\textbf{(C) } 118\qquad\textbf{(D) } 122\qquad\textbf{(E) } 126\qquad</math> | <math>\textbf{(A) } 110\qquad\textbf{(B) } 114\qquad\textbf{(C) } 118\qquad\textbf{(D) } 122\qquad\textbf{(E) } 126\qquad</math> |
Revision as of 11:52, 13 February 2021
Contents
Problem
Semicircle has diameter of length . Circle lies tangent to at a point and intersects at points and . If and , then the area of equals , where and are relatively prime positive integers, and is a positive integer not divisible by the square of any prime. What is ?
Video Solution by Punxsutawney Phil
https://youtube.com/watch?v=cEHF5iWMe9c
Video Solution by OmegaLearn (Similar Triangles, Law of Sines, Law of Cosines )
See also
2021 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.