Difference between revisions of "1978 AHSME Problems/Problem 8"

(Solution)
 
 
Line 1: Line 1:
 +
== Problem 8 ==
 +
 +
If <math>x\neq y</math> and the sequences <math>x,a_1,a_2,y</math> and <math>x,b_1,b_2,b_3,y</math> each are in arithmetic progression, then <math>(a_2-a_1)/(b_2-b_1)</math> equals
 +
 +
<math>\textbf{(A) }\frac{2}{3}\qquad
 +
\textbf{(B) }\frac{3}{4}\qquad
 +
\textbf{(C) }1\qquad
 +
\textbf{(D) }\frac{4}{3}\qquad
 +
\textbf{(E) }\frac{3}{2} </math> 
 +
 +
 
==Solution==
 
==Solution==
 
WLOG, let <math>x =2</math> and <math>y = 5</math>. From the first sequence, we get
 
WLOG, let <math>x =2</math> and <math>y = 5</math>. From the first sequence, we get
Line 9: Line 20:
  
 
~JustinLee2017
 
~JustinLee2017
 +
 +
==See Also==
 +
{{AHSME box|year=1978|num-b=7|num-a=9}}
 +
{{MAA Notice}}

Latest revision as of 11:03, 13 February 2021

Problem 8

If $x\neq y$ and the sequences $x,a_1,a_2,y$ and $x,b_1,b_2,b_3,y$ each are in arithmetic progression, then $(a_2-a_1)/(b_2-b_1)$ equals

$\textbf{(A) }\frac{2}{3}\qquad \textbf{(B) }\frac{3}{4}\qquad \textbf{(C) }1\qquad \textbf{(D) }\frac{4}{3}\qquad \textbf{(E) }\frac{3}{2}$


Solution

WLOG, let $x =2$ and $y = 5$. From the first sequence, we get \[2, 3, 4, 5\] so $a_2 - a_1 = 1$ From the second sequence, we get \[2, 2+r, 2+2r, 2+3r, 5\] so $2+4r = 5$ and $r = \frac{3}{4}$ Thus, we have \[2, 2 \frac{3}{4}, 3 \frac{1}{2} ...\] and $b_2 - b_1 = \frac{3}{4}$ So $\frac{1}{\frac{3}{4}} = \frac{4}{3}$ \[\boxed{D}\]

~JustinLee2017

See Also

1978 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png