Difference between revisions of "1978 AHSME Problems/Problem 27"

(Created page with "==Solution== Let this integer be <math>n</math>. We have <math> n\equiv 1 \mod 2</math>, <math>n \equiv 1 \mod 3</math>, <math>n \equiv 1 \mod 4</math> <math>\ldots</math> <m...")
 
 
Line 1: Line 1:
 +
== Problem 27 ==
 +
 +
There is more than one integer greater than <math>1</math> which, when divided by any integer <math>k</math> such that <math>2 \le k \le 11</math>, has a remainder of <math>1</math>.
 +
What is the difference between the two smallest such integers?
 +
 +
<math>\textbf{(A) }2310\qquad
 +
\textbf{(B) }2311\qquad
 +
\textbf{(C) }27,720\qquad
 +
\textbf{(D) }27,721\qquad
 +
\textbf{(E) }\text{none of these}  </math> 
 +
 +
 
==Solution==
 
==Solution==
  
Line 23: Line 35:
  
 
~JustinLee2017
 
~JustinLee2017
 +
 +
==See Also==
 +
{{AHSME box|year=1978|num-b=26|num-a=28}}
 +
{{MAA Notice}}

Latest revision as of 22:31, 12 February 2021

Problem 27

There is more than one integer greater than $1$ which, when divided by any integer $k$ such that $2 \le k \le 11$, has a remainder of $1$. What is the difference between the two smallest such integers?

$\textbf{(A) }2310\qquad \textbf{(B) }2311\qquad \textbf{(C) }27,720\qquad \textbf{(D) }27,721\qquad  \textbf{(E) }\text{none of these}$


Solution

Let this integer be $n$. We have $n\equiv 1 \mod 2$, $n \equiv 1 \mod 3$, $n \equiv 1 \mod 4$ $\ldots$ $n \equiv 1 \mod 11$. Recall that if \[a \equiv b \mod c\] and \[a \equiv b \mod d\] then \[a \equiv b \mod (lcm (c,d))\] We see that since $n\equiv 1 \mod 2$, $n \equiv 1 \mod 3$, $n \equiv 1 \mod 4$ $\ldots$ $n \equiv 1 \mod 11$. We have \[n \equiv 1 \mod (lcm (2, 3, \ldots , 10, 11))\]

From $2$ to $11$, $8$ contains the largest power of $2$, $9$ contains the largest power of $3$, and $10$ contains the largest power of $5$. Thus, our lcm is equal to \[2^3 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11\] Since $n > 1$, our $2$ smallest values of $n$ are \[n = 1 + (2^3 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11)\] and \[n = 1 + 2(2^3 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11)\] The difference between these values is simply the value of \[(2^3 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11) = 40 \cdot 99 \cdot 7\] \[= 3960 \cdot 7\] \[= 27720, \boxed{C}\]

~JustinLee2017

See Also

1978 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 26
Followed by
Problem 28
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png