Difference between revisions of "2021 AMC 12A Problems/Problem 25"

(Solution)
Line 3: Line 3:
  
 
<math>\textbf{(A) }5 \qquad \textbf{(B) }6 \qquad \textbf{(C) }7 \qquad \textbf{(D) }8\qquad \textbf{(E) }9</math>
 
<math>\textbf{(A) }5 \qquad \textbf{(B) }6 \qquad \textbf{(C) }7 \qquad \textbf{(D) }8\qquad \textbf{(E) }9</math>
 +
 +
==Solution==
 +
Consider the prime factorization <cmath>n={p_1}^{e_1}{p_2}^{e_2}{p_3}^{e_3}\cdots{p_k}^{e_k}.</cmath> By the Multiplication Principle, <cmath>d(n)=(e_1+1)(e_2+1)(e_3+1)\cdots(e_k+1).</cmath> Now, we rewrite <math>f(n)</math> as <cmath>f(n)=\frac{d(n)}{\sqrt [3]n}=\frac{(e_1+1)(e_2+1)(e_3+1)\cdots(e_k+1)}{{p_1}^{{e_1}/3}{p_2}^{{e_2}/3}{p_3}^{{e_3}/3}\cdots{p_k}^{{e_k}/3}}=\left(\frac{e_1+1}{{p_1}^{{e_1}/3}}\right)\left(\frac{e_2+1}{{p_2}^{{e_2}/3}}\right)\left(\frac{e_3+1}{{p_3}^{{e_3}/3}}\right)\cdots\left(\frac{e_k+1}{{p_k}^{{e_k}/3}}\right).</cmath> As <math>f(n)>0</math> for all positive integers <math>n,</math> it follows that for all positive integers <math>a</math> and <math>b</math>, <math>f(a)>f(b)</math> if and only if <math>f(a)^3>f(b)^3.</math> So, <math>f(n)</math> is maximized if and only if <cmath>f(n)^3=\left(\frac{(e_1+1)^3}{{p_1}^{e_1}}\right)\left(\frac{(e_2+1)^3}{{p_2}^{e_2}}\right)\left(\frac{(e_3+1)^3}{{p_3}^{e_3}}\right)\cdots\left(\frac{(e_k+1)^3}{{p_k}^{e_k}}\right)</cmath> is maximized.
 +
 +
For every factor <math>\frac{(e_i+1)^3}{{p_i}^{e_i}}</math> with a fixed <math>p_i</math> where <math>1\leq i\leq k,</math> the denominator grows faster than the numerator, as exponential functions grow faster than polynomial functions. For each prime <math>p_i=2,3,5,7,\cdots,</math> we look for the <math>e_i</math> for which <math>\frac{(e_i+1)^3}{{p_i}^{e_i}}</math> is a relative maximum:
 +
<cmath>\begin{tabular}{ c c c c }
 +
pi & ei & fraction & choose? \\
 +
\hline
 +
2 & 0 & 1 & \\ 
 +
2 & 1 & 4 & \\
 +
2 & 2 & 27/4 &\\
 +
2 & 3 & 8 & yes\\
 +
2 & 4 & 125/16 & \\
 +
\hline
 +
3 & 0 & 1 &\\
 +
3 & 1 & 8/3 & \\
 +
3 & 2 & 3 &  yes\\
 +
3 & 3 & 64/27 &  \\
 +
\hline
 +
5 & 0 & 1 &  \\
 +
5 & 1 & 8/5 &  yes\\
 +
5 & 2 & 27/25 & \\
 +
\hline
 +
7 & 0 & 1 &  \\
 +
7 & 1 & 8/7 &  yes\\
 +
7 & 2 & 27/49 & \\
 +
\hline
 +
11 & 0 & 1 & yes \\
 +
11 & 1 & 8/11 &  \\
 +
\hline
 +
,,, & ... & ... &
 +
\end{tabular}</cmath>
 +
 +
Finally, the number we seek is <math>N=2^3 3^2 5^1 7^1 = 2520.</math> The sum of its digits is <math>2+5+2+0=\boxed{\textbf{(E) }9}</math>
 +
 
 +
~MRENTHUSIASM
  
 
== Video Solution by OmegaLearn (Multiplicative function properties + Meta-solving ) ==
 
== Video Solution by OmegaLearn (Multiplicative function properties + Meta-solving ) ==

Revision as of 07:22, 12 February 2021

Problem

Let $d(n)$ denote the number of positive integers that divide $n$, including $1$ and $n$. For example, $d(1)=1,d(2)=2,$ and $d(12)=6$. (This function is known as the divisor function.) Let\[f(n)=\frac{d(n)}{\sqrt [3]n}.\]There is a unique positive integer $N$ such that $f(N)>f(n)$ for all positive integers $n\ne N$. What is the sum of the digits of $N?$

$\textbf{(A) }5 \qquad \textbf{(B) }6 \qquad \textbf{(C) }7 \qquad \textbf{(D) }8\qquad \textbf{(E) }9$

Solution

Consider the prime factorization \[n={p_1}^{e_1}{p_2}^{e_2}{p_3}^{e_3}\cdots{p_k}^{e_k}.\] By the Multiplication Principle, \[d(n)=(e_1+1)(e_2+1)(e_3+1)\cdots(e_k+1).\] Now, we rewrite $f(n)$ as \[f(n)=\frac{d(n)}{\sqrt [3]n}=\frac{(e_1+1)(e_2+1)(e_3+1)\cdots(e_k+1)}{{p_1}^{{e_1}/3}{p_2}^{{e_2}/3}{p_3}^{{e_3}/3}\cdots{p_k}^{{e_k}/3}}=\left(\frac{e_1+1}{{p_1}^{{e_1}/3}}\right)\left(\frac{e_2+1}{{p_2}^{{e_2}/3}}\right)\left(\frac{e_3+1}{{p_3}^{{e_3}/3}}\right)\cdots\left(\frac{e_k+1}{{p_k}^{{e_k}/3}}\right).\] As $f(n)>0$ for all positive integers $n,$ it follows that for all positive integers $a$ and $b$, $f(a)>f(b)$ if and only if $f(a)^3>f(b)^3.$ So, $f(n)$ is maximized if and only if \[f(n)^3=\left(\frac{(e_1+1)^3}{{p_1}^{e_1}}\right)\left(\frac{(e_2+1)^3}{{p_2}^{e_2}}\right)\left(\frac{(e_3+1)^3}{{p_3}^{e_3}}\right)\cdots\left(\frac{(e_k+1)^3}{{p_k}^{e_k}}\right)\] is maximized.

For every factor $\frac{(e_i+1)^3}{{p_i}^{e_i}}$ with a fixed $p_i$ where $1\leq i\leq k,$ the denominator grows faster than the numerator, as exponential functions grow faster than polynomial functions. For each prime $p_i=2,3,5,7,\cdots,$ we look for the $e_i$ for which $\frac{(e_i+1)^3}{{p_i}^{e_i}}$ is a relative maximum: \[\begin{tabular}{ c c c c } pi & ei & fraction & choose? \\  \hline  2 & 0 & 1 & \\    2 & 1 & 4 & \\  2 & 2 & 27/4 &\\  2 & 3 & 8 & yes\\  2 & 4 & 125/16 & \\ \hline  3 & 0 & 1 &\\  3 & 1 & 8/3 & \\  3 & 2 & 3 &  yes\\  3 & 3 & 64/27 &  \\ \hline  5 & 0 & 1 &  \\  5 & 1 & 8/5 &  yes\\  5 & 2 & 27/25 & \\ \hline  7 & 0 & 1 &  \\  7 & 1 & 8/7 &  yes\\  7 & 2 & 27/49 & \\ \hline  11 & 0 & 1 & yes \\  11 & 1 & 8/11 &   \\ \hline ,,, & ... & ... &  \end{tabular}\]

Finally, the number we seek is $N=2^3 3^2 5^1 7^1 = 2520.$ The sum of its digits is $2+5+2+0=\boxed{\textbf{(E) }9}$

~MRENTHUSIASM

Video Solution by OmegaLearn (Multiplicative function properties + Meta-solving )

https://youtu.be/6P-0ZHAaC_A

~ pi_is_3.14

See also

2021 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png