Difference between revisions of "2021 AMC 12A Problems/Problem 25"
(→Solution) |
MRENTHUSIASM (talk | contribs) |
||
Line 3: | Line 3: | ||
<math>\textbf{(A) }5 \qquad \textbf{(B) }6 \qquad \textbf{(C) }7 \qquad \textbf{(D) }8\qquad \textbf{(E) }9</math> | <math>\textbf{(A) }5 \qquad \textbf{(B) }6 \qquad \textbf{(C) }7 \qquad \textbf{(D) }8\qquad \textbf{(E) }9</math> | ||
+ | |||
+ | ==Solution== | ||
+ | Consider the prime factorization <cmath>n={p_1}^{e_1}{p_2}^{e_2}{p_3}^{e_3}\cdots{p_k}^{e_k}.</cmath> By the Multiplication Principle, <cmath>d(n)=(e_1+1)(e_2+1)(e_3+1)\cdots(e_k+1).</cmath> Now, we rewrite <math>f(n)</math> as <cmath>f(n)=\frac{d(n)}{\sqrt [3]n}=\frac{(e_1+1)(e_2+1)(e_3+1)\cdots(e_k+1)}{{p_1}^{{e_1}/3}{p_2}^{{e_2}/3}{p_3}^{{e_3}/3}\cdots{p_k}^{{e_k}/3}}=\left(\frac{e_1+1}{{p_1}^{{e_1}/3}}\right)\left(\frac{e_2+1}{{p_2}^{{e_2}/3}}\right)\left(\frac{e_3+1}{{p_3}^{{e_3}/3}}\right)\cdots\left(\frac{e_k+1}{{p_k}^{{e_k}/3}}\right).</cmath> As <math>f(n)>0</math> for all positive integers <math>n,</math> it follows that for all positive integers <math>a</math> and <math>b</math>, <math>f(a)>f(b)</math> if and only if <math>f(a)^3>f(b)^3.</math> So, <math>f(n)</math> is maximized if and only if <cmath>f(n)^3=\left(\frac{(e_1+1)^3}{{p_1}^{e_1}}\right)\left(\frac{(e_2+1)^3}{{p_2}^{e_2}}\right)\left(\frac{(e_3+1)^3}{{p_3}^{e_3}}\right)\cdots\left(\frac{(e_k+1)^3}{{p_k}^{e_k}}\right)</cmath> is maximized. | ||
+ | |||
+ | For every factor <math>\frac{(e_i+1)^3}{{p_i}^{e_i}}</math> with a fixed <math>p_i</math> where <math>1\leq i\leq k,</math> the denominator grows faster than the numerator, as exponential functions grow faster than polynomial functions. For each prime <math>p_i=2,3,5,7,\cdots,</math> we look for the <math>e_i</math> for which <math>\frac{(e_i+1)^3}{{p_i}^{e_i}}</math> is a relative maximum: | ||
+ | <cmath>\begin{tabular}{ c c c c } | ||
+ | pi & ei & fraction & choose? \\ | ||
+ | \hline | ||
+ | 2 & 0 & 1 & \\ | ||
+ | 2 & 1 & 4 & \\ | ||
+ | 2 & 2 & 27/4 &\\ | ||
+ | 2 & 3 & 8 & yes\\ | ||
+ | 2 & 4 & 125/16 & \\ | ||
+ | \hline | ||
+ | 3 & 0 & 1 &\\ | ||
+ | 3 & 1 & 8/3 & \\ | ||
+ | 3 & 2 & 3 & yes\\ | ||
+ | 3 & 3 & 64/27 & \\ | ||
+ | \hline | ||
+ | 5 & 0 & 1 & \\ | ||
+ | 5 & 1 & 8/5 & yes\\ | ||
+ | 5 & 2 & 27/25 & \\ | ||
+ | \hline | ||
+ | 7 & 0 & 1 & \\ | ||
+ | 7 & 1 & 8/7 & yes\\ | ||
+ | 7 & 2 & 27/49 & \\ | ||
+ | \hline | ||
+ | 11 & 0 & 1 & yes \\ | ||
+ | 11 & 1 & 8/11 & \\ | ||
+ | \hline | ||
+ | ,,, & ... & ... & | ||
+ | \end{tabular}</cmath> | ||
+ | |||
+ | Finally, the number we seek is <math>N=2^3 3^2 5^1 7^1 = 2520.</math> The sum of its digits is <math>2+5+2+0=\boxed{\textbf{(E) }9}</math> | ||
+ | |||
+ | ~MRENTHUSIASM | ||
== Video Solution by OmegaLearn (Multiplicative function properties + Meta-solving ) == | == Video Solution by OmegaLearn (Multiplicative function properties + Meta-solving ) == |
Revision as of 07:22, 12 February 2021
Contents
Problem
Let denote the number of positive integers that divide , including and . For example, and . (This function is known as the divisor function.) LetThere is a unique positive integer such that for all positive integers . What is the sum of the digits of
Solution
Consider the prime factorization By the Multiplication Principle, Now, we rewrite as As for all positive integers it follows that for all positive integers and , if and only if So, is maximized if and only if is maximized.
For every factor with a fixed where the denominator grows faster than the numerator, as exponential functions grow faster than polynomial functions. For each prime we look for the for which is a relative maximum:
Finally, the number we seek is The sum of its digits is
~MRENTHUSIASM
Video Solution by OmegaLearn (Multiplicative function properties + Meta-solving )
~ pi_is_3.14
See also
2021 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 24 |
Followed by Last problem |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.