Difference between revisions of "2021 AMC 12A Problems/Problem 25"
(→Solution) |
MRENTHUSIASM (talk | contribs) |
||
Line 3: | Line 3: | ||
<math>\textbf{(A) }5 \qquad \textbf{(B) }6 \qquad \textbf{(C) }7 \qquad \textbf{(D) }8\qquad \textbf{(E) }9</math> | <math>\textbf{(A) }5 \qquad \textbf{(B) }6 \qquad \textbf{(C) }7 \qquad \textbf{(D) }8\qquad \textbf{(E) }9</math> | ||
+ | |||
+ | ==Solution== | ||
+ | Consider the prime factorization <cmath>n={p_1}^{e_1}{p_2}^{e_2}{p_3}^{e_3}\cdots{p_k}^{e_k}.</cmath> By the Multiplication Principle, <cmath>d(n)=(e_1+1)(e_2+1)(e_3+1)\cdots(e_k+1).</cmath> Now, we rewrite <math>f(n)</math> as <cmath>f(n)=\frac{d(n)}{\sqrt [3]n}=\frac{(e_1+1)(e_2+1)(e_3+1)\cdots(e_k+1)}{{p_1}^{{e_1}/3}{p_2}^{{e_2}/3}{p_3}^{{e_3}/3}\cdots{p_k}^{{e_k}/3}}=\left(\frac{e_1+1}{{p_1}^{{e_1}/3}}\right)\left(\frac{e_2+1}{{p_2}^{{e_2}/3}}\right)\left(\frac{e_3+1}{{p_3}^{{e_3}/3}}\right)\cdots\left(\frac{e_k+1}{{p_k}^{{e_k}/3}}\right).</cmath> As <math>f(n)>0</math> for all positive integers <math>n,</math> it follows that for all positive integers <math>a</math> and <math>b</math>, <math>f(a)>f(b)</math> if and only if <math>f(a)^3>f(b)^3.</math> So, <math>f(n)</math> is maximized if and only if <cmath>f(n)^3=\left(\frac{(e_1+1)^3}{{p_1}^{e_1}}\right)\left(\frac{(e_2+1)^3}{{p_2}^{e_2}}\right)\left(\frac{(e_3+1)^3}{{p_3}^{e_3}}\right)\cdots\left(\frac{(e_k+1)^3}{{p_k}^{e_k}}\right)</cmath> is maximized. | ||
+ | |||
+ | For every factor <math>\frac{(e_i+1)^3}{{p_i}^{e_i}}</math> with a fixed <math>p_i</math> where <math>1\leq i\leq k,</math> the denominator grows faster than the numerator, as exponential functions grow faster than polynomial functions. For each prime <math>p_i=2,3,5,7,\cdots,</math> we look for the <math>e_i</math> for which <math>\frac{(e_i+1)^3}{{p_i}^{e_i}}</math> is a relative maximum: | ||
+ | <cmath>\begin{tabular}{ c c c c } | ||
+ | pi & ei & fraction & choose? \\ | ||
+ | \hline | ||
+ | 2 & 0 & 1 & \\ | ||
+ | 2 & 1 & 4 & \\ | ||
+ | 2 & 2 & 27/4 &\\ | ||
+ | 2 & 3 & 8 & yes\\ | ||
+ | 2 & 4 & 125/16 & \\ | ||
+ | \hline | ||
+ | 3 & 0 & 1 &\\ | ||
+ | 3 & 1 & 8/3 & \\ | ||
+ | 3 & 2 & 3 & yes\\ | ||
+ | 3 & 3 & 64/27 & \\ | ||
+ | \hline | ||
+ | 5 & 0 & 1 & \\ | ||
+ | 5 & 1 & 8/5 & yes\\ | ||
+ | 5 & 2 & 27/25 & \\ | ||
+ | \hline | ||
+ | 7 & 0 & 1 & \\ | ||
+ | 7 & 1 & 8/7 & yes\\ | ||
+ | 7 & 2 & 27/49 & \\ | ||
+ | \hline | ||
+ | 11 & 0 & 1 & yes \\ | ||
+ | 11 & 1 & 8/11 & \\ | ||
+ | \hline | ||
+ | ,,, & ... & ... & | ||
+ | \end{tabular}</cmath> | ||
+ | |||
+ | Finally, the number we seek is <math>N=2^3 3^2 5^1 7^1 = 2520.</math> The sum of its digits is <math>2+5+2+0=\boxed{\textbf{(E) }9}</math> | ||
+ | |||
+ | ~MRENTHUSIASM | ||
== Video Solution by OmegaLearn (Multiplicative function properties + Meta-solving ) == | == Video Solution by OmegaLearn (Multiplicative function properties + Meta-solving ) == |
Revision as of 07:22, 12 February 2021
Contents
Problem
Let denote the number of positive integers that divide
, including
and
. For example,
and
. (This function is known as the divisor function.) Let
There is a unique positive integer
such that
for all positive integers
. What is the sum of the digits of
Solution
Consider the prime factorization By the Multiplication Principle,
Now, we rewrite
as
As
for all positive integers
it follows that for all positive integers
and
,
if and only if
So,
is maximized if and only if
is maximized.
For every factor with a fixed
where
the denominator grows faster than the numerator, as exponential functions grow faster than polynomial functions. For each prime
we look for the
for which
is a relative maximum:
Finally, the number we seek is The sum of its digits is
~MRENTHUSIASM
Video Solution by OmegaLearn (Multiplicative function properties + Meta-solving )
~ pi_is_3.14
See also
2021 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 24 |
Followed by Last problem |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.