Difference between revisions of "2021 AMC 10A Problems/Problem 21"

(Solution (Misplaced problem?))
Line 1: Line 1:
 
==Solution (Misplaced problem?)==
 
==Solution (Misplaced problem?)==
 
Note that the extensions of the given lines will determine an equilateral triangle because the hexagon is equiangular. The area of the first triangle is <math>192\sqrt{3}</math>, so the side length is <math>\sqrt{192\cdot 4}=16\sqrt{3}</math>. The area of the second triangle is <math>324\sqrt{3}</math>, so the side length is <math>\sqrt{4\cdot 324}=36</math>. We can set the first value equal to <math>AB+CD+EF</math> and the second equal to <math>BC+DE+FA</math> by substituting some lengths in with different sides of the same equilateral triangle. The perimeter of the hexagon is just the sum of these two, which is <math>16\sqrt{3}+36</math> and <math>16+3+36=\boxed{55~\textbf{(C)}}</math>
 
Note that the extensions of the given lines will determine an equilateral triangle because the hexagon is equiangular. The area of the first triangle is <math>192\sqrt{3}</math>, so the side length is <math>\sqrt{192\cdot 4}=16\sqrt{3}</math>. The area of the second triangle is <math>324\sqrt{3}</math>, so the side length is <math>\sqrt{4\cdot 324}=36</math>. We can set the first value equal to <math>AB+CD+EF</math> and the second equal to <math>BC+DE+FA</math> by substituting some lengths in with different sides of the same equilateral triangle. The perimeter of the hexagon is just the sum of these two, which is <math>16\sqrt{3}+36</math> and <math>16+3+36=\boxed{55~\textbf{(C)}}</math>
 +
 +
 +
== Video Solution by OmegaLearn (Angle Chasing and Equilateral Triangles) ==
 +
https://youtu.be/ptBwDcmDaLA
 +
 +
~ pi_is_3.14

Revision as of 22:04, 11 February 2021

Solution (Misplaced problem?)

Note that the extensions of the given lines will determine an equilateral triangle because the hexagon is equiangular. The area of the first triangle is $192\sqrt{3}$, so the side length is $\sqrt{192\cdot 4}=16\sqrt{3}$. The area of the second triangle is $324\sqrt{3}$, so the side length is $\sqrt{4\cdot 324}=36$. We can set the first value equal to $AB+CD+EF$ and the second equal to $BC+DE+FA$ by substituting some lengths in with different sides of the same equilateral triangle. The perimeter of the hexagon is just the sum of these two, which is $16\sqrt{3}+36$ and $16+3+36=\boxed{55~\textbf{(C)}}$


Video Solution by OmegaLearn (Angle Chasing and Equilateral Triangles)

https://youtu.be/ptBwDcmDaLA

~ pi_is_3.14