Difference between revisions of "2021 AMC 12B Problems/Problem 18"

m (Problem 18)
m (Solution 1)
Line 6: Line 6:
 
==Solution==
 
==Solution==
 
===Solution 1===
 
===Solution 1===
The answer being in the form <math>z+\frac 6z</math> means that there are two solutions, some complex number and its complex conjugate. <cmath>a+bi = \frac{6}{a-bi}</cmath> <cmath>a^2+b^2=6</cmath> We should then be able to test out some ordered pairs of (a, b). After testing it out, we get the ordered pairs of <math>(-1, \sqrt{5})</math> and its conjugate <math>(-1, -\sqrt{5})</math>. Plugging this into answer format gives us <math>\boxed{\textbf{(A) }-2}</math> ~Lopkiloinm
+
The answer being in the form <math>z+\frac 6z</math> means that there are two solutions, some complex number and its complex conjugate. <cmath>a+bi = \frac{6}{a-bi}</cmath> <cmath>a^2+b^2=6</cmath> We should then be able to test out some ordered pairs of <math>(a, b)</math>. After testing it out, we get the ordered pairs of <math>(-1, \sqrt{5})</math> and its conjugate <math>(-1, -\sqrt{5})</math>. Plugging this into answer format gives us <math>\boxed{\textbf{(A) }-2}</math> ~Lopkiloinm

Revision as of 18:57, 11 February 2021

Problem 18

Let $z$ be a complex number satisfying $12|z|^2=2|z+2|^2+|z^2+1|^2+31.$ What is the value of $z+\frac 6z?$

$\textbf{(A) }-2 \qquad \textbf{(B) }-1 \qquad \textbf{(C) }\frac12\qquad \textbf{(D) }1 \qquad \textbf{(E) }4$

Solution

Solution 1

The answer being in the form $z+\frac 6z$ means that there are two solutions, some complex number and its complex conjugate. \[a+bi = \frac{6}{a-bi}\] \[a^2+b^2=6\] We should then be able to test out some ordered pairs of $(a, b)$. After testing it out, we get the ordered pairs of $(-1, \sqrt{5})$ and its conjugate $(-1, -\sqrt{5})$. Plugging this into answer format gives us $\boxed{\textbf{(A) }-2}$ ~Lopkiloinm