Difference between revisions of "2021 AMC 12A Problems/Problem 12"

(Video Solution by Hawk Math)
Line 10: Line 10:
 
==Video Solution by Hawk Math==
 
==Video Solution by Hawk Math==
 
https://www.youtube.com/watch?v=AjQARBvdZ20
 
https://www.youtube.com/watch?v=AjQARBvdZ20
 +
 +
== Video Solution pi_is_3.14 (Using Vieta's Formulas & Combinatorics) ==
 +
https://youtu.be/5U4MJTo3F5M
 +
 +
~ pi_is_3.14
  
 
==See also==
 
==See also==
 
{{AMC12 box|year=2021|ab=A|num-b=11|num-a=13}}
 
{{AMC12 box|year=2021|ab=A|num-b=11|num-a=13}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 18:28, 11 February 2021

Problem

All the roots of the polynomial $z^6-10z^5+Az^4+Bz^3+Cz^2+Dz+16$ are positive integers, possibly repeated. What is the value of $B$?

$\textbf{(A) }-88 \qquad \textbf{(B) }-80 \qquad \textbf{(C) }-64 \qquad \textbf{(D) }-41\qquad \textbf{(E) }-40$

Solution

By Vieta's formulae, the sum of the 6 roots is 10 and the product of the 6 roots is 16. By inspection, we see the roots are 1, 1, 2, 2, 2, and 2, so the function is $(z-1)^2(z-2)^4=(z^2-2z+1)(z^4-8z^3+24z^2-32z+16)$. Therefore, $B = -32 - 48 - 8 = \boxed{\textbf{(A)} -88}$ ~JHawk0224

Video Solution by Hawk Math

https://www.youtube.com/watch?v=AjQARBvdZ20

Video Solution pi_is_3.14 (Using Vieta's Formulas & Combinatorics)

https://youtu.be/5U4MJTo3F5M

~ pi_is_3.14

See also

2021 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png