Difference between revisions of "2021 AMC 10B Problems/Problem 16"

Line 1: Line 1:
Call a positive integer an uphill integer if every digit is strictly greater than the previous digit. For example, <math>1357, 89, and 5</math> are all uphill integers, but <math>32, 1240, and 466</math> are not. How many uphill integers are divisible by <math>15</math>?
+
Call a positive integer an uphill integer if every digit is strictly greater than the previous digit. For example, <math>1357, 89,</math> and <math>5</math> are all uphill integers, but <math>32, 1240,</math> and <math>466</math> are not. How many uphill integers are divisible by <math>15</math>?
  
 
<math>\textbf{(A)} ~4 \qquad\textbf{(B)} ~5 \qquad\textbf{(C)} ~6 \qquad\textbf{(D)} ~7 \qquad\textbf{(E)} ~8</math>
 
<math>\textbf{(A)} ~4 \qquad\textbf{(B)} ~5 \qquad\textbf{(C)} ~6 \qquad\textbf{(D)} ~7 \qquad\textbf{(E)} ~8</math>

Revision as of 16:04, 11 February 2021

Call a positive integer an uphill integer if every digit is strictly greater than the previous digit. For example, $1357, 89,$ and $5$ are all uphill integers, but $32, 1240,$ and $466$ are not. How many uphill integers are divisible by $15$?

$\textbf{(A)} ~4 \qquad\textbf{(B)} ~5 \qquad\textbf{(C)} ~6 \qquad\textbf{(D)} ~7 \qquad\textbf{(E)} ~8$