Difference between revisions of "2021 AMC 12A Problems/Problem 18"

(Created page with "==Problem== These problems will not be posted until the 2021 AMC12A is released on Thursday, February 4, 2021. ==Solution== The solutions will be posted once the problems are...")
 
Line 1: Line 1:
 
==Problem==
 
==Problem==
These problems will not be posted until the 2021 AMC12A is released on Thursday, February 4, 2021.
+
Let <math>f</math> be a function defined on the set of positive rational numbers with the property that <math>f(a\cdot b) = f(a)+f(b)</math> for all positive rational numbers <math>a</math> and <math>b</math>. Furthermore, suppose that <math>f</math> also has the property that <math>f(p)=p</math> for every prime number <math>p</math>. For which of the following values <math>x</math> is <math>f(x) < 0</math>?
==Solution==
+
 
The solutions will be posted once the problems are posted.
+
<math>\textbf{(A) }\frac{17}{32}\qquad\textbf{(B) }\frac{11}{16}\qquad\textbf{(C) }\frac{7}{9}\qquad\textbf{(D) }\frac{7}{6}\qquad\textbf{(E) }\frac{25}{11}\qquad</math>
==Note==
+
 
See [[2021 AMC 12A Problems/Problem 1|problem 1]].
+
==Video Solution by Punxsutawney Phil==
 +
https://youtu.be/8gGcj95rlWY
 +
 
 
==See also==
 
==See also==
 
{{AMC12 box|year=2021|ab=A|num-b=17|num-a=19}}
 
{{AMC12 box|year=2021|ab=A|num-b=17|num-a=19}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 13:16, 11 February 2021

Problem

Let $f$ be a function defined on the set of positive rational numbers with the property that $f(a\cdot b) = f(a)+f(b)$ for all positive rational numbers $a$ and $b$. Furthermore, suppose that $f$ also has the property that $f(p)=p$ for every prime number $p$. For which of the following values $x$ is $f(x) < 0$?

$\textbf{(A) }\frac{17}{32}\qquad\textbf{(B) }\frac{11}{16}\qquad\textbf{(C) }\frac{7}{9}\qquad\textbf{(D) }\frac{7}{6}\qquad\textbf{(E) }\frac{25}{11}\qquad$

Video Solution by Punxsutawney Phil

https://youtu.be/8gGcj95rlWY

See also

2021 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png