Difference between revisions of "2020 AMC 12B Problems/Problem 7"

m (Solution 1 (complex))
Line 10: Line 10:
 
Then, the rotation of <math>(a,b)</math> by 45 degrees gives a line of slope <math>\frac{a+b}{a-b}</math>.
 
Then, the rotation of <math>(a,b)</math> by 45 degrees gives a line of slope <math>\frac{a+b}{a-b}</math>.
  
We get the equation <math>\frac{6b}{a}=\frac{a+b}{a-b}\implies a^2-5ab+6b^2=(a-3b)(a-2b)=0</math> and this gives our answer.
+
We get the equation <math>\frac{6b}{a}=\frac{a+b}{a-b}\implies a^2-5ab+6b^2=(a-3b)(a-2b)=0</math> and this gives our answer to be <math>\mathbf{(C)} \frac{3}{2}</math>.
  
 
~jeffisepic
 
~jeffisepic

Revision as of 23:57, 28 January 2021

Problem

Two nonhorizontal, non vertical lines in the $xy$-coordinate plane intersect to form a $45^{\circ}$ angle. One line has slope equal to $6$ times the slope of the other line. What is the greatest possible value of the product of the slopes of the two lines?

$\textbf{(A)}\ \frac16 \qquad\textbf{(B)}\ \frac23 \qquad\textbf{(C)}\  \frac32 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ 6$

Solution 1 (complex)

Let the intersection point is the origin. Let $(a,b)$ be a point on the line of lesser slope. The mutliplication of $a+bi$ by cis 45. $(a+bi)(\frac{1}{\sqrt 2 }+i*\frac{1}{\sqrt 2 })=\frac{1}{\sqrt 2 }((a-b)+(a+b)*i)$ and therefore $(a-b, a+b)$ lies on the line of greater slope.

Then, the rotation of $(a,b)$ by 45 degrees gives a line of slope $\frac{a+b}{a-b}$.

We get the equation $\frac{6b}{a}=\frac{a+b}{a-b}\implies a^2-5ab+6b^2=(a-3b)(a-2b)=0$ and this gives our answer to be $\mathbf{(C)} \frac{3}{2}$.

~jeffisepic

Solution 2 (vector products)

Intersect at the origin and select a point on each line to define vectors $\mathbf{v}_{i}=(x_{i},y_{i})$. Note that $\theta=45^{\circ}$ gives equal magnitudes of the vector products \[\mathbf{v}_1\cdot\mathbf{v}_2 = v_{1}v_{2}\cos\theta \quad\mathrm{and}\quad |\mathbf{v}_1\times\mathbf{v}_2| = v_{1}v_{2}\sin\theta .\]

Substituting coordinate expressions for vector products, we find \[\mathbf{v}_1\cdot\mathbf{v}_2 = |\mathbf{v}_1\times\mathbf{v}_2| \ \implies\ x_{1}x_{2}+y_{1}y_{2} = x_{1}y_{2}-x_{2}y_{1} .\] Divide this equation by $x_{1}x_{2}$ to obtain \[1+m_{1}m_{2} = m_{2}-m_{1} ,\] where $m_{i}=y_{i}/x_{i}$ is the slope of line $i$. Taking $m_{2}=6m_{1}$ , we obtain \[6m_{1}^{2}-5m_{1}+1 = 0 \ \implies\ m_{1} \in \{\frac{1}{3},\frac{1}{2}\} .\] The latter solution gives the largest product of slopes $m_{1}m_{2} = 6m_{1}^2 = \frac{3}{2} . \quad \boxed{\textbf{(C)}}$

~fairpark

Solution 3 (bash)

Place on coordinate plane. Lines are $y=mx, y=6mx.$ The intersection point at the origin. Goes through $(0,0),(1,m),(1,6m),(1,0).$ So by law of sines, $\frac{5m}{\sin{45^{\circ}}} = \frac{\sqrt{1+m^2}}{1/(\sqrt{1+36m^2})},$ lettin $a=m^2$ we want $6a.$ Simplifying gives $50a = (1+a)(1+36a),$ so $36a^2-13a+1=0 \implies 36(a-1/4)(a-1/9)=0,$ so max $a=1/4,$ and $6a=3/2 \quad \boxed{(C)}.$

Law of sines on the green triangle with the red angle (45 deg) and blue angle, where sine blue angle is $1/(\sqrt{1+36m^2})$ from right triangle w vertices $(0,0),(1,0),(1,6m).$

~ccx09

Solution 4 (tan)

Let one of the lines have equation $y=ax$. Let $\theta$ be the angle that line makes with the x-axis, so $\tan(\theta)=a$. The other line will have a slope of $\tan(45^{\circ}+\theta)=\frac{\tan(45^{\circ})+\tan(\theta)}{1-\tan(45^{\circ})\tan(\theta)} = \frac{1+a}{1-a}$. Since the slope of one line is $6$ times the other, and $a$ is the smaller slope, $6a = \frac{1+a}{1-a} \implies 6a-6a^2=1+a \implies 6a^2-5a+1=0 \implies a=\frac{1}{2},\frac{1}{3}$. If $a = \frac{1}{2}$, the other line will have slope $\frac{1+\frac{1}{2}}{1-\frac{1}{2}} = 3$. If $a = \frac{1}{3}$, the other line will have slope $\frac{1+\frac{1}{3}}{1-\frac{1}{3}} = 2$. The first case gives the bigger product of $\frac{3}{2}$, so our answer is $\boxed{\textbf{(C)}\  \frac32}$.

~JHawk0224

Solution 5 (matrix transformation)

Multiply by the rotation transformation matrix $\begin{bmatrix} \cos \theta & - \sin \theta\\ \sin \theta & \cos \theta \end{bmatrix}$ where $\theta = 45^{\circ}.$

Solution 6 (Cheating)

Let the smaller slope be $m$, then the larger slope is $6m$. Since we want the greatest product we begin checking each answer choice, starting with (E).

$6m^2=6$.

$m^2=1$.

This gives $m=1$ and $6m=6$. Checking with a protractor we see that this does not form a 45 degree angle.

Using this same method for the other answer choices, we eventually find that the answer is $\boxed{\textbf{(C)}\  \frac32}$ since our slopes are $\frac12$ and $3$ which forms a perfect 45 degree angle.

Video Solution

Two solutions https://youtu.be/6ujfjGLzVoE

~IceMatrix

See Also

2020 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

so hard for problem 7 this should have been like 16 or so