Difference between revisions of "2021 CIME I Problems"

(Created page with "Releasing soooooooooooooooooooooonnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn.....................")
 
(incomplete problems)
Line 1: Line 1:
Releasing soooooooooooooooooooooonnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn.....................
+
{{CIME box|year=2021|n=I}}
 +
==Problem 1==
 +
Let <math>ABCD</math> be a square. Points <math>P</math> and <math>Q</math> are on sides <math>AB</math> and <math>CD,</math> respectively<math>,</math> such that the areas of quadrilaterals <math>APQD</math> and <math>BPQC</math> are <math>20</math> and <math>21,</math> respectively. Given that <math>\tfrac{AP}{BP}=2,</math> then <math>\tfrac{DQ}{CQ}=\tfrac{a}{b},</math> where <math>a</math> and <math>b</math> are relatively prime positive integers. Find <math>a+b</math>.
 +
 
 +
==Problem 2==
 +
For digits <math>a, b, c,</math> with <math>a\neq 0,</math> the positive integer <math>N</math> can be written as <math>\underline{a}\underline{a}\underline{b}\underline{b}</math> in base <math>9,</math> and <math>\underline{a}\underline{a}\underline{b}\underline{b}\underline{c}</math> in base <math>5</math>. Find the base-<math>10</math> representation of <math>N</math>.

Revision as of 19:01, 10 January 2021

2021 CIME I (ProblemsAnswer KeyResources)
Preceded by
[[2021 CIME I Problems/Problem {{{num-b}}}|Problem {{{num-b}}}]]
Followed by
[[2021 CIME I Problems/Problem {{{num-a}}}|Problem {{{num-a}}}]]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All CIME Problems and Solutions

Problem 1

Let $ABCD$ be a square. Points $P$ and $Q$ are on sides $AB$ and $CD,$ respectively$,$ such that the areas of quadrilaterals $APQD$ and $BPQC$ are $20$ and $21,$ respectively. Given that $\tfrac{AP}{BP}=2,$ then $\tfrac{DQ}{CQ}=\tfrac{a}{b},$ where $a$ and $b$ are relatively prime positive integers. Find $a+b$.

Problem 2

For digits $a, b, c,$ with $a\neq 0,$ the positive integer $N$ can be written as $\underline{a}\underline{a}\underline{b}\underline{b}$ in base $9,$ and $\underline{a}\underline{a}\underline{b}\underline{b}\underline{c}$ in base $5$. Find the base-$10$ representation of $N$.