Difference between revisions of "2007 AIME I Problems/Problem 12"
(→Solution 2: got it, complete solution) |
m (shoelace) |
||
Line 2: | Line 2: | ||
In [[isosceles triangle]] <math>\triangle ABC</math>, <math>A</math> is located at the [[origin]] and <math>B</math> is located at (20,0). Point <math>C</math> is in the [[first quadrant]] with <math>\displaystyle AC = BC</math> and angle <math>BAC = 75^{\circ}</math>. If triangle <math>ABC</math> is rotated counterclockwise about point <math>A</math> until the image of <math>C</math> lies on the positive <math>y</math>-axis, the area of the region common to the original and the rotated triangle is in the form <math>p\sqrt{2} + q\sqrt{3} + r\sqrt{6} + s</math>, where <math>\displaystyle p,q,r,s</math> are integers. Find <math>\frac{p-q+r-s}2</math>. | In [[isosceles triangle]] <math>\triangle ABC</math>, <math>A</math> is located at the [[origin]] and <math>B</math> is located at (20,0). Point <math>C</math> is in the [[first quadrant]] with <math>\displaystyle AC = BC</math> and angle <math>BAC = 75^{\circ}</math>. If triangle <math>ABC</math> is rotated counterclockwise about point <math>A</math> until the image of <math>C</math> lies on the positive <math>y</math>-axis, the area of the region common to the original and the rotated triangle is in the form <math>p\sqrt{2} + q\sqrt{3} + r\sqrt{6} + s</math>, where <math>\displaystyle p,q,r,s</math> are integers. Find <math>\frac{p-q+r-s}2</math>. | ||
+ | __TOC__ | ||
== Solution == | == Solution == | ||
{{image}} | {{image}} | ||
Line 22: | Line 23: | ||
=== Solution 2 === | === Solution 2 === | ||
− | Redefine the points in the same manner as the last time (<math>\displaystyle \triangle AB'C'</math>, intersect at <math>D</math>, <math>E</math>, and <math>F</math>). This time, notice that <math>[ADEF] = [\triangle AB'C'] - ([\triangle ADC'] + [\triangle EFB'] | + | Redefine the points in the same manner as the last time (<math>\displaystyle \triangle AB'C'</math>, intersect at <math>D</math>, <math>E</math>, and <math>F</math>). This time, notice that <math>[ADEF] = [\triangle AB'C'] - ([\triangle ADC'] + [\triangle EFB']</math>. |
The area of <math>[\triangle AB'C'] = [\triangle ABC]</math>. The [[altitude]] of <math>\triangle ABC</math> is clearly <math>10 \tan 75 = 10 \tan (30 + 45)</math>. The [[trigonometric identity|tangent addition rule]] yields <math>10(2 + \sqrt{3})</math> (see above). Thus, <math>\displaystyle [\triangle ABC] = \frac{1}{2} 20 \cdot (20 + 10\sqrt{3}) = 200 + 100\sqrt{3}</math>. | The area of <math>[\triangle AB'C'] = [\triangle ABC]</math>. The [[altitude]] of <math>\triangle ABC</math> is clearly <math>10 \tan 75 = 10 \tan (30 + 45)</math>. The [[trigonometric identity|tangent addition rule]] yields <math>10(2 + \sqrt{3})</math> (see above). Thus, <math>\displaystyle [\triangle ABC] = \frac{1}{2} 20 \cdot (20 + 10\sqrt{3}) = 200 + 100\sqrt{3}</math>. | ||
Line 31: | Line 32: | ||
Therefore, <math>[ADEF] = (200 + 100\sqrt{3}) - \left((50 + 50\sqrt{3}) + (-500\sqrt{2} + 400\sqrt{3} - 300\sqrt{6} +750)\right) = 500\sqrt{2} - 350\sqrt{3} + 300\sqrt{6} - 600</math>, and our answer is <math>875</math>. | Therefore, <math>[ADEF] = (200 + 100\sqrt{3}) - \left((50 + 50\sqrt{3}) + (-500\sqrt{2} + 400\sqrt{3} - 300\sqrt{6} +750)\right) = 500\sqrt{2} - 350\sqrt{3} + 300\sqrt{6} - 600</math>, and our answer is <math>875</math>. | ||
+ | |||
+ | === Solution 3 === | ||
+ | From the given information, calculate the coordinates of all the points (by finding the equations of the lines, equating). Then, use the shoelace method to calculate the area of the intersection. | ||
== See also == | == See also == |
Revision as of 15:36, 16 March 2007
Problem
In isosceles triangle , is located at the origin and is located at (20,0). Point is in the first quadrant with and angle . If triangle is rotated counterclockwise about point until the image of lies on the positive -axis, the area of the region common to the original and the rotated triangle is in the form , where are integers. Find .
Solution
An image is supposed to go here. You can help us out by creating one and editing it in. Thanks.
Solution 1
Call the vertices of the new triangle (, the origin, is a vertex of both triangles). and intersect at a single point, . intersect at two points; the one with the higher y-coordinate will be , and the other . The intersection of the two triangles is a quadrilateral . Notice that we can find this area by subtracting .
Since and both have measures , both of their complements are , and . We know that , and since the angles of a triangle add up to , we find that .
So is a . It can be solved by drawing an altitude splitting the angle into and angles – this forms a right triangle and a isosceles right triangle. Since we know that , the base of the triangle is , the height is , and the base of the is . Thus, the total area of .
Now, we need to find , which is a right triangle. We can find its base by subtracting from . is also a triangle, so we find that . .
To solve , note that . Through algebra, we can calculate :
To finish, find . The solution is .
Solution 2
Redefine the points in the same manner as the last time (, intersect at , , and ). This time, notice that .
The area of . The altitude of is clearly . The tangent addition rule yields (see above). Thus, .
The area of (with a side on the y-axis) can be found by splitting it into two triangles, and right triangles. . The sine subtraction rule shows that . , in terms of the height of , is equal to . .
The area of was found in the previous solution to be .
Therefore, , and our answer is .
Solution 3
From the given information, calculate the coordinates of all the points (by finding the equations of the lines, equating). Then, use the shoelace method to calculate the area of the intersection.
See also
2007 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 11 |
Followed by Problem 13 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |